Projekt

Zurück zur Übersicht

Integrating spatial predictions of vegetation, soils, geomorphology and hydrology for improved assessment of ecosystem services under climate change

Titel Englisch Integrating spatial predictions of vegetation, soils, geomorphology and hydrology for improved assessment of ecosystem services under climate change
Gesuchsteller/in Guisan Antoine
Nummer 162754
Förderungsinstrument Interdisziplinäre Projekte
Forschungseinrichtung Département d'Ecologie et d'Evolution Faculté de Biologie et de Médecine Université de Lausanne
Hochschule Universität Lausanne - LA
Hauptdisziplin Andere Gebiete der Umweltwissenschaften
Beginn/Ende 01.01.2016 - 31.12.2018
Bewilligter Betrag 752'644.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Andere Gebiete der Umweltwissenschaften
Oekologie

Keywords (8)

Végétation; Télédétection satellitaire; Géomorphologie; Intégration de données; Hydrogéologie; Sols; Ecologie; Pergélisol

Lay Summary (Französisch)

Lead
EcoGeo INTEGRALP - Intégrer les prédictions spatiales de végétation, sols, géomorphologie et hydrologie pour une meilleure prédiction des écosystèmes et de leur services dans un contexte de changements climatiques
Lay summary
Comprendre la distribution spatiale des organismes et des facteurs environnementaux est nécessaire pour prédire la réponse des écosystèmes, et de leur services à l’homme, dans la perspective des changements climatiques. Un tel objectif ne peut être atteint qu’en améliorant notre capacité de quantifier la distribution spatiale des facteurs environnementaux clés. La télédétection satellitaire est un outil particulièrement prometteur dans ce context, car elle permet la mesure de variations environnementales à haute résolution sur de grandes étendues spatiales. Le but premier de ce projet multidisciplinaire est de combiner des analyses de la végétation, des sols, de la géomorphologie, et de l’hydrologie dans une même région, de manière à ce que les observations et predictions de l’un puisse servir à prédire les autres, et les écosystèmes. Ce projet réside à l’interface entre écologie et sciences environnementales, en se basant sur les dernières technologies en télédétection et analyses spatiales. Les modèles développés permettront en particulier d’obtenir de meilleures predictions de l’impact des changements climatiques sur les écosystèmes et plus particulièrement sur leur capacité à délivrer deux types de services: la qualité visuelle du paysage et l’approvisionnement en eau. Ces predictions seront discutées avec un groupe d’acteurs de la gestion environnementale, pour voir comment ces changements pourraient affecter les sociétés humnaines et leur bien-être. Ce projet devrait donc permettre d’améliorer notre capacité de modéliser les écosystèmes et leur services, mais aussi les liens entre science et société.
Direktlink auf Lay Summary Letzte Aktualisierung: 03.12.2015

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
153460 Ecosystem engineers' contribution to soil structure formation in floodplains (FloodSTRESS) 01.01.2015 Projekte
170753 A state of the art UAV system for hyperspectral, thermal and LIDAR mapping 01.04.2017 R'EQUIP
152866 Challenges in simulating alpine species assemblages under global change (SESAM'ALP) 01.06.2014 Projektförderung (Abt. I-III)
152924 Analysis and modelling of the mountain permafrost distribution using machine learning 01.06.2014 Projektförderung (Abt. I-III)
159756 Fusing multiple sources of remote sensing data using textural information: high-resolution, high-frequency monitoring in alpine environments 01.09.2015 Projektförderung (Abt. I-III)

Abstract

Background. Progressing in our capacity to obtain spatial representation of key biotic and abiotic environmental factors is a major challenge for predicting the response of ecosystems and their services to climate change. Meeting this challenge requires combining field surveys, most recent numeric data and advanced remote sensing technology. This is best addressed in a multidisciplinary way, focusing research efforts in different fields of natural sciences jointly in a same geographic area, so that one component can serve for predicting another. This project aims to tackle this challenge and allow a step forward by linking data and models for 1) vegetation, 2) soils, 3) geomorphology and 4) hydrology, which are usually developed separately. It thus lies at the crossroads between plant/vegetation ecology and environmental sciences.Specific aims. To use the most recent measurement, remote sensing data and techniques, and spatial modelling approaches to generate new sets of spatially-distributed data and use them to improve models in the four above-mentioned fields. This will generate improved climate change predictions for vegetation and hydrological regimes, considering multiple interactions between all ecosystem components. These predictions will ultimately be used to assess, in collaboration with a group of stakeholders, how changes in two key ecosystem services - landscape scenic value and water provision - could impact on human well-being.Methods. Three nested scales will be considered in the Swiss Western Alps of Canton de Vaud: regional, local and three focus sites. A broad range of data and methods will be used, including field surveys for geomorphology, a large set of existing data for vegetation, soils and hydrology, remote sensing images from drones, planes and satellites, advanced GIS analyses and spatial modelling (e.g. dispersal for plants, vegetation dynamics), physically based hydrogeological modelling and advanced geostatistical algorithms. Funding requested. Salaries for 1 postdoc, who will also help coordinating the project, and for 2 PhD students; field survey in remote alpine areas, data acquisition, travel to conferences, and the organization of two stakeholder workshops. One PhD student funded by UNIL will also participate to the project as matching funds. Total requested: CHF 793’319.Expected added value and impact. This project will greatly contribute to advance our fundamental understanding of the links between the various ecosystem components, and how these interact to improve our predictive capacity, with a specific focus on vegetation and hydrology. The further use of the improved models and landscape simulations to assess changes in ecosystem services is a rarely performed exercise, which will allow implicating stakeholders early in the scientific process, yielding added value through boosting both technology transfer and the science-society (public) and science-policy (managers, decision-makers) dialogs.
-