Project

Back to overview

Design of perovskite and doped-ceria redox materials for high performance solar thermochemical splitting of H2O and CO2

English title Design of perovskite and doped-ceria redox materials for high performance solar thermochemical splitting of H2O and CO2
Applicant Steinfeld Aldo
Number 162435
Funding scheme Project funding (Div. I-III)
Research institution Institut für Energietechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Inorganic Chemistry
Start/End 01.01.2016 - 31.12.2018
Approved amount 198'692.00
Show all

All Disciplines (4)

Discipline
Inorganic Chemistry
Mechanical Engineering
Material Sciences
Chemical Engineering

Keywords (10)

thermochemical; redox; perovskite; ceria; syngas; DFT; water splitting; CO2 splitting; solar energy; solar fuel

Lay Summary (German)

Lead
Solar fuels production from H2O and CO2 via high-temperature thermochemical redox cycling
Lay summary
Saubere und nachhaltige Brennstoffe sind eine zentrale Herausforderung des 21. Jahrhunderts. Solar-thermochemische Zyklen für die Spaltung von H2O und CO2 auf der Basis von Redoxreaktionen geeigneter Metalloxide sind ein energieeffizienter Ansatz, um H2 und CO Mischungen (Syngas) als Vorläufer synthetischer Kraftstoffe zu erzeugen. Ziel des Projektes ist die Erweiterung des Verständnisses fundamentaler physiko-chemischer Prinzipien, welche die Leistung thermochemisch einsetzbarer Metalloxide bestimmen, um auf diesem Wege ihre solarthermische Ausbeute mit neuen Design- und Optimierungsstrategien zu erhöhen. Eine zentrale Aufgabe ist dabei die Kosten-Nutzen-Analyse des Wechselspiels zwischen der Thermodynamik nichtstöchiometrischer Redoxreaktionen und der entsprechenden Sauerstoffdiffusions-Kinetik. Im ersten Schritt des Projektes werden Ceroxid-Materialien als solarthermische Benchmarks durch kationische Substitutionsstrategien optimiert. Ausgehend von diesen Standards werden in der nächsten Projektphase Oxide vom Perovskit-Typ im Hinblick auf ihre thermo-mechanische Stabilität, Redoxkapazität und Sauerstoffleitfähigkeits-Kinetik als massgebende Optimierungs-Parameter untersucht. Ausgewählte Deskriptoren werden darüber hinaus durch systematisches  Screening auf der Basis von DFT-Methoden angesteuert, und die resultierenden theoretischen Trends werden mit thermodynamischen und festkörperchemischen Analysen der Zielmaterialien korreliert.
Direct link to Lay Summary Last update: 06.10.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Comparing the solar-to-fuel energy conversion efficiency of ceria and perovskite based thermochemical redox cycles for splitting H2O and CO2
Muhich Christopher L., Blaser Samuel, Hoes Marie C., Steinfeld Aldo (2018), Comparing the solar-to-fuel energy conversion efficiency of ceria and perovskite based thermochemical redox cycles for splitting H2O and CO2, in International Journal of Hydrogen Energy, 43(41), 18814-18831.
Reactive stability of promising scalable doped ceria materials for thermochemical two-step CO 2 dissociation
Jacot R., Naik J. Madhusudhan, Moré R., Michalsky R., Steinfeld A., Patzke G. R. (2018), Reactive stability of promising scalable doped ceria materials for thermochemical two-step CO 2 dissociation, in Journal of Materials Chemistry A, 6(14), 5807-5816.
High Redox Capacity of Al-Doped La 1− x Sr x MnO 3− δ Perovskites for Splitting CO 2 and H 2 O at Mn-Enriched Surfaces
Ezbiri M., Becattini V., Hoes M., Michalsky R., Steinfeld A. (2017), High Redox Capacity of Al-Doped La 1− x Sr x MnO 3− δ Perovskites for Splitting CO 2 and H 2 O at Mn-Enriched Surfaces, in ChemSusChem, 10(7), 1517-1525.
Solar thermochemical splitting of CO 2 into separate streams of CO and O 2 with high selectivity, stability, conversion, and efficiency
Marxer Daniel, Furler Philipp, Takacs Michael, Steinfeld Aldo (2017), Solar thermochemical splitting of CO 2 into separate streams of CO and O 2 with high selectivity, stability, conversion, and efficiency, in Energy Environ. Sci..
Thermodynamics of paired charge-compensating doped ceria with superior redox performance for solar thermochemical splitting of H 2 O and CO 2
Hoes Marie, Muhich Christopher L., Jacot Roger, Patzke Greta R., Steinfeld Aldo (2017), Thermodynamics of paired charge-compensating doped ceria with superior redox performance for solar thermochemical splitting of H 2 O and CO 2, in Journal of Materials Chemistry A, 5(36), 19476-19484.
Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals
Jacot Roger, Moré René, Michalsky Ronald, Steinfeld Aldo, Patzke Greta R. (2017), Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals, in J. Mater. Chem. A, 5(37), 19901-19913.

Collaboration

Group / person Country
Types of collaboration
Deutsches Zentrum für Luft- und Raumfahrt e.V. Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
IMDEA Energy Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
University of Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
2018 AIChE Annual Meeting - International Congress on Energy Talk given at a conference Examining the solar-to-fuel efficiency of ceria and perovskite thermochemical redox cycles for splitting H2O and CO2 28.10.2018 Pittsburgh, United States of America Steinfeld Aldo; Hoes Marie-Christine;
SolarPACES Conference Talk given at a conference Reticulated porous ceramic ceria structures with modified surface geometry for solar thermochemical splitting of water and carbon dioxide 02.10.2018 Casablanca, Morocco Steinfeld Aldo; Hoes Marie-Christine;
CIMTEC – 14th International Ceramics Congress and 8th Forum on New Materials Talk given at a conference 3D-printed porous ceria structures for solar thermochemical redox splitting of H2O and CO2 04.06.2018 Perugia, Italy Hoes Marie-Christine; Steinfeld Aldo;
2017 AIChE Annual Meeting Talk given at a conference Thermodynamic characterization of charge compensating double doped ceria for improved redox performance of solar thermochemical H2O/CO2 splitting cycles 29.10.2017 Minneapolis, United States of America Hoes Marie-Christine; Steinfeld Aldo; Patzke Greta Ricarda;
International Workshop on Solar Thermochemistry Talk given at a conference Thermodynamic characterization of paired charge-compensating doped ceria for improved redox performance of solar thermochemical H2O/CO2 splitting cycles 12.09.2017 Jülich, Germany Steinfeld Aldo; Hoes Marie-Christine; Patzke Greta Ricarda;
2017 Fall Meeting of the Swiss Chemical Society Talk given at a conference Dopant Screening of Ceria-Based Materials for Solar Thermochemical Two-Step CO2-Splitting 21.08.2017 Bern, Switzerland Steinfeld Aldo; Patzke Greta Ricarda;
13th SOLLAB Doctoral Colloquium on Solar Concentrating Technologies, Talk given at a conference Thermodynamic characterization of charge compensating double doped ceria for improved redox performance of solar thermochemical H2O/CO2 splitting cycles 15.05.2017 Berlin, Germany Steinfeld Aldo; Hoes Marie-Christine;
ASME Power & Energy Conference, Charlotte, USA Talk given at a conference Doping strategies to alter the H20/CO2 splitting behavior of ceria redox materials 26.06.2016 Charlotte, USA, United States of America Hoes Marie-Christine; Steinfeld Aldo;
12th SOLLAB Doctoral Colloqium on Solar Concentrating Technologies Talk given at a conference Analyzing nonstoichiometric redox materials for solar thermochemical gas splitting 06.06.2016 Cabo de Gata, Spain Hoes Marie-Christine; Steinfeld Aldo;


Associated projects

Number Title Start Funding scheme
170735 Solar Concentrator-Reactor Setup for the Thermochemical Production of Renewable Liquid Fuels from H2O and CO2 01.12.2016 R'EQUIP

Abstract

Clean and sustainable fuels for transportation are a central challenge of the 21st century. Solar-driven H2O and CO2 splitting thermochemical cycles employing metal oxide redox reactions offer an energetically efficient approach for generating H2 and CO (syngas) as a precursor of liquid hydrocarbon fuels. This proposal aims at advancing our fundamental understanding of the physical chemistry principles that govern the performance of metal oxide redox materials, so that we can design and optimize these materials for maximizing the solar-to-fuel energy conversion efficiency. The research involves analyzing the tradeoffs between the thermodynamics of nonstoichiometric redox reactions versus the kinetics of oxygen vacancy diffusion. An assessment of ceria-based materials as benchmark reference will be performed, targeting the optimization of CeO2 through cationic doping strategies. Novel perovskite-based materials will be examined to outline descriptors of their thermo-mechanical stability, redox capacity, and oxygen conduction kinetics. Systematic DFT-based computational screening of defined performance descriptors will be employed and experimentally validated through thermogravimetric analysis and solid state characterization.
-