Project

Back to overview

URANIUM BASED MOLECULAR MAGNETS: DESIGN, SYNTHESIS AND MAGNETIC STUDIES

Applicant Mazzanti Marinella
Number 162430
Funding scheme Project funding (Div. I-III)
Research institution Institut des sciences et ingénierie chimiques EPFL - SB - ISIC
Institution of higher education EPF Lausanne - EPFL
Main discipline Inorganic Chemistry
Start/End 01.04.2016 - 31.03.2019
Approved amount 204'920.00
Show all

Keywords (7)

Magnetism; Actinides; Uranium; Pentavalent Uranium; Single Molecule Magnets; Coordination chemistry; Supramolecular Chemistry

Lay Summary (French)

Lead
Dans ce projet nous proposons de concevoir des systèmes moléculaires ou supramoléculaires d’uranium pour le développement de molécules aimants à barrière d’inversion de spin et température d’hystérésis plus élevées que celles qui existent actuellement. Ces caractéristiques sont cruciales pour une future application des molécules aimants dans les domaines de stockage de hautes densités de données, de l’informatique quantique et de la spintronique. Ces travaux se feront par une approche interdisciplinaire combinant la synthèse de nouveaux composés d’uranium et le développement de modèles pour l’analyse des propriétés magnétiques. Nous envisageons d’explorer deux stratégies originales. Une basée sur des complexes polynucléaires d’uranyle(V) et une basée sur de composés dinucléaires d’uranium(III).
Lay summary

Dans ce projet nous adopterons une approche interdisciplinaire pour le développement de nouveaux aimants moléculaires à base d’uranium combinant la synthèse de nouveaux composés d’uranium et le développement de modèles pour l’analyse des propriétés magnétiques. Nous envisageons d’explorer deux stratégies originales. Dans la première nous tirerons avantage de l’anisotropie du cation UO2+ et de sa capacité à coordiner d’autres cations métalliques via ses fonctions oxo pour développer des complexes poly-homométalliques et poly-hétérométalliques avec des propriétés de molécules aimants. Une conception précise du ligand et des méthodes de synthèses habilement choisies seront développées pour empêcher la dismutation du cation UO2+ et pour promouvoir l’auto-assemblage de composés discrets. L’association du cation anisotropique UO2+ avec des cations métalliques à haut spin du bloc d ou 4f devrait résulter en l’obtention de hautes barrières d’inversion de spin et de hautes températures d’hystérésis. De plus, la configuration électronique 5f1 du cation UO2+ est simple et donc un excellent point de départ pour le développement de modèles magnétiques qui est une étape essentielle pour mieux comprendre la relation structure-propriétés.

Dans une seconde approche, des complexes polymétalliques d’U(III) seront préparés avec pour but de promouvoir le couplage magnétique de deux ions U(III) pour obtenir un comportement de molécule aimant à plus hautes températures. Nous explorerons en particulier des approches synthétiques menant à la formation de complexes polynucléaires où les ions uranium seront pontés par des ligands nitrures. Dans les deux stratégies, l’étude des propriétés magnétiques et l’analyse complète des nouveaux composés synthétisés seront essentielles pour comprendre les mécanismes d’échange de spin et les paramètres influençant le comportement de molécule aimant.

Direct link to Lay Summary Last update: 17.03.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Facile N-functionalization and strong magnetic communication in a diuranium( v ) bis-nitride complex
Barluzzi Luciano, Chatelain Lucile, Fadaei-Tirani Farzaneh, Zivkovic Ivica, Mazzanti Marinella (2019), Facile N-functionalization and strong magnetic communication in a diuranium( v ) bis-nitride complex, in Chemical Science, 10(12), 3543-3555.
The role of bridging ligands in dinitrogen reduction and functionalization by uranium multimetallic complexes
Falcone Marta, Barluzzi Luciano, Andrez Julie, Fadaei Tirani Farzaneh, Zivkovic Ivica, Fabrizio Alberto, Corminboeuf Clemence, Severin Kay, Mazzanti Marinella (2019), The role of bridging ligands in dinitrogen reduction and functionalization by uranium multimetallic complexes, in Nature Chemistry, 11(2), 154-160.
The effect of iron binding on uranyl( v ) stability
Faizova Radmila, White Sarah, Scopelliti Rosario, Mazzanti Marinella (2018), The effect of iron binding on uranyl( v ) stability, in Chemical Science, 9(38), 7520-7527.
Nitrogen reduction and functionalization by a multimetallic uranium nitride complex
Falcone Marta, Chatelain Lucile, Scopelliti Rosario, Živković Ivica, Mazzanti Marinella (2017), Nitrogen reduction and functionalization by a multimetallic uranium nitride complex, in Nature, 547(7663), 332-335.
Synthesis and SMM behaviour of trinuclear versus dinuclear 3d–5f uranyl( v )–cobalt( ii ) cation–cation complexes
Chatelain Lucile, Tuna Floriana, Pécaut Jacques, Mazzanti Marinella (2017), Synthesis and SMM behaviour of trinuclear versus dinuclear 3d–5f uranyl( v )–cobalt( ii ) cation–cation complexes, in Dalton Transactions, 46(17), 5498-5502.

Collaboration

Group / person Country
Types of collaboration
Floriana Tuna/ University of Manchester Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Laurent Maron /Universite Toulouse France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Clemence Corminboeuf/EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
2019 Heavy Element Chemistry Principal Investigators' Meeting Talk given at a conference Small Molecule Activation by Multimetallic Complexes of Uranium 17.04.2019 Gaithersburg, United States of America Mazzanti Marinella;
ACS spring Talk given at a conference Recent Developments in Uranium(V) Chemistry 03.04.2019 Orlando, United States of America Mazzanti Marinella;
ACS spring meeting Talk given at a conference Dinitrogen Reduction and Fuctionalization by Multimetallic Uranium Complexes 03.04.2019 Orlando, United States of America Mazzanti Marinella;
SCS Fall Meeting Poster The role of bridging ligands in dinitrogen reduction and functionalization by uranium multimetallic complexes 07.09.2018 Lausanne, Switzerland Barluzzi Luciano;
10th International Conference on f-elements Poster The role of bridging ligands in dinitrogen reduction and functionalization by uranium multimetallic complexes 03.09.2018 Lausanne, Switzerland Barluzzi Luciano;
ICCC18 Talk given at a conference Dinitrogen Reduction and Fuctionalization by Multimetallic Uranium Complexes 31.07.2018 Sendai, Japan Mazzanti Marinella;
ISNSC Talk given at a conference Small Molecule Activation by Multimetallic Uranium Complexes 09.07.2018 Dresden, Germany Mazzanti Marinella;
28th Rare Earth Conference Talk given at a conference Small Molecule Activation by Multimetallic Uranium Nitrides 18.06.2018 AMES, IOWA, United States of America Mazzanti Marinella;
Dalton 2018-Royal Society of Chemistry Talk given at a conference Small Molecule Activation by Multimetallic Uranium Complexes 03.04.2018 Warwick, Great Britain and Northern Ireland Mazzanti Marinella;
Gordon Research Conference Talk given at a conference Activation and Functionalization of Small Molecules by Multimetallic Uranium Complexes 09.07.2017 Newport, United States of America Mazzanti Marinella;


Self-organised

Title Date Place

Awards

Title Year
poster award at the 10th International conference on f elements 2018

Associated projects

Number Title Start Funding scheme
178793 MULTIMETALLIC COMPLEXES OF F-ELEMENTS: ACTIVATION AND FUNCTIONALIZATION OF SMALL MOLECULES (N2, CO AND CO2) AND MAGNETIC PROPERTIES 01.09.2018 Project funding (Div. I-III)
169699 Universal aspects of meta-magnetic transitions in frustrated Ising chains 01.09.2017 Project funding (Div. I-III)

Abstract

The overall goal of this project is to find new molecular systems that can store magnetic information at reasonable temperature. Uranium compounds are attractive candidates for the development of new molecules displaying slow magnetic relaxation of a purely molecular origin (i.e. single-molecule magnets, or SMMs). Compared to d-block or f-block elements, the high magnetic anisotropy of the uranium ion over a range of oxidation states, combined with its ability to engage in strong magnetic exchange interactions with other metal centres, makes it particularly promising for the development of SMMs possessing barriers to spin reversal high enough to observe hysteresis at reasonable temperatures-a crucial prerequisite for the application of SMMs in high density data storage, quantum computing and spintronics devices. In this project we propose to design original uranium based molecular and supramolecular systems for the development of molecular magnets with higher spin-inversion barriers and higher hysteresis temperatures than currently obtained. This will be achieved trough an interdisciplinary approach combining the rational synthesis of new uranium compounds and the development of models for the analysis of the magnetic properties. We envisage to explore two original strategies. In the first strategy we will take advantage of the single ion anisotropy of the UO2+ cation and of the ability of this cation to bind other metal cations trough the oxo group for the development of poly-homometallic and poly-heterometallic complexes with single molecule magnet properties. Subtle ligand tuning and carefully chosen synthetic methods will be developed to prevent disproportionation of the UO2+ cation and to promote self-assembly of discrete compounds. High spin-inversion barriers and hysteresis temperatures should result from associating the anisotropic UO2+ cation and d-block and f-block metal cations with a high total spin. Moreover, the simple 5f1 electronic structure is an excellent starting point for the development of magnetic models, an essential step for understanding the structure-properties relation.In the second approach polymetallic complexes of U(III) will be prepared with the goal of promoting ferromagnetic coupling between the two U(III) ions leading to SMM behavior at higher temperatures. In both strategies, the study of the magnetic properties of the new compounds synthesized and their quantitative analysis will be essential for the understanding of the spin exchange mechanisms and of the parameters affecting SMM behavior, which in turn will provide input for the synthesis of compounds with higher spin-inversion barriers and showing magnetic hysteresis at higher temperatures, a crucial step for applications such as high density information storage devices, spintronics or quantum computing.
-