Project

Back to overview

First-principles simulation of magnetocaloric and electrocaloric effects in nanostructuredfilms

English title First-principles simulation of magnetocaloric and electrocaloric effects in nanostructuredfilms
Applicant Ederer Claude
Number 162297
Funding scheme Project funding (Div. I-III)
Research institution Departement Materialwissenschaft ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Condensed Matter Physics
Start/End 01.09.2016 - 31.08.2019
Approved amount 286'600.00
Show all

Keywords (5)

electro-caloric; magneto-caloric; multiferroics; solid state refrigeration; atomistic simulations

Lay Summary (German)

Lead
In magnetischen Materialien führt ein angelegtes Magnetfeld zu einer Ausrichtung der atomaren magnetischen Dipolmomente und verringert dadurch deren thermische Unordnung. Diese thermische Unordnung (auch Entropie genannt) ist eng mit der Temperatur des Materials verknüpft. Schaltet man das Feld aus, vergrössert das wiederum die thermische Unordnung oder, wenn das Material von seiner Umgebung thermisch isoliert ist, verringert sich dessen Temperatur. Das Gleiche passiert auch in dielektrischen Materialien bei Anlegen/Ausschalten eines elektrischen Feldes. Diese sogenannten magneto-/elektro-kalorischen Effekte können in manchen Fällen zu Temperaturveränderungen von mehreren Grad führen und sind daher äusserst vielversprechend, um neuartige und besonders umweltfreundliche Kühlsysteme zu entwickeln. Hierzu sind allerdings optimierte Materialien notwendig, die einen besonders grossen kalorischen Effekt in einem geeigneten Temperaturbereich aufweisen.
Lay summary

In diesem Projekt verwenden wir atomistische Simulationen, um die physikalischen Faktoren zu identifizieren, die zu besonders guten kalorischen Eigenschaften führen. Unser Hauptaugenmerk gilt dabei insbesondere Dünnschicht-Materialien, für welche vor Kurzem ein besonders hoher elektro-kalorischer Effekt gefunden wurde, und sogenannten "multi-ferroischen" Materialen, d.h. Materialien, die sowohl magnetische als auch elektrische Dipolmomente besitzen. Deren gegenseitige Wechselwirkung verspricht wiederum einen besonders starken kalorischen Effekt und erlaubt zudem auch eine weitergehende Optimierung durch das Anlegen von magnetischen und elektrischen Feldern in ein und demselben Material.

Die Beschreibung verschiedener Materialien erfolgt dabei auf Basis von quantenmechanischen "ab inito" Rechnungen und kommt daher gänzlich ohne empirisch zu bestimmende Parameter aus. Deswegen ist es mit Hilfe dieser Simulationen auch möglich, quantitative Vorhersagen für bisher nicht experimentell gemessene Grössen oder gänzlich neuartige Materialien zu machen.

Unsere Arbeit wird daher zu einem besseren Verständnis der physikalische Prozesse führen, die für einen besonders starken kalorischen Effekt notwendig sind, und gleichzeitig wertvolle Richtlinien zur besseren Optimierung spezifischer Materialien liefern. Solche optimierten Materialien repräsentieren einen wichtigen Schritt hin zur möglichen Entwicklung alternativer Kühlaggregate basierend auf ferro-kalorischen Effekten.

Direct link to Lay Summary Last update: 06.06.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
First-principles-based strain and temperature-dependent ferroic phase diagram of SrMnO3
Edström Alexander, Ederer Claude (2018), First-principles-based strain and temperature-dependent ferroic phase diagram of SrMnO3, in Physical Review Materials, 2(10), 104409-104409.
Origins of the Inverse Electrocaloric Effect
Grünebohm Anna, Ma Yang-Bin, Marathe Madhura, Xu Bai-Xiang, Albe Karsten, Kalcher Constanze, Meyer Kai-Christian, Shvartsman Vladimir V., Lupascu Doru C., Ederer Claude (2018), Origins of the Inverse Electrocaloric Effect, in Energy Technology, 6(8), 1491-1511.
The Impact of Hysteresis on the Electrocaloric Effect at First-Order Phase Transitions
Marathe Madhura, Ederer Claude, Grünebohm Anna (2018), The Impact of Hysteresis on the Electrocaloric Effect at First-Order Phase Transitions, in physica status solidi (b), 255(2), 1700308-1700308.
Electrocaloric effect in BaTiO3 at all three ferroelectric transitions: Anisotropy and inverse caloric effects
Marathe Madhura, Renggli Damian, Sanlialp Mehmet, Karabasov Maksim O., Shvartsman Vladimir V., Lupascu Doru C., Grünebohm Anna, Ederer Claude (2017), Electrocaloric effect in BaTiO3 at all three ferroelectric transitions: Anisotropy and inverse caloric effects, in Physical Review B, 96(1), 014102-014102.

Collaboration

Group / person Country
Types of collaboration
Group of Prof. Doru Lupasco, University of Duisburg-Essen Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Group of Prof. Inna Ponomareva, University of South Florida United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Ab initio modelling of advanced materials (AMM) Talk given at a conference Magnetic Exchange Interactions in Multiferroic SrMnO3 13.09.2019 Ekaterinburg, Russia Edström Tomas Alexander;
Eastmag Talk given at a conference Prediction of enormous magnetoelectric coupling and cross-caloric effect around a tetracritical point in multiferroic SrMnO3 13.09.2019 Ekaterinburg, Russia Edström Tomas Alexander;
Swiss Physical Society Meeting Talk given at a conference Prediction of enormous magnetoelectric coupling and cross-caloric effect around a tetracritical point in multiferroic SrMnO3 28.08.2019 Zurich, Switzerland Edström Tomas Alexander;
International symposium on Integrated Functionalities Talk given at a conference Prediction of enormous magnetoelectric coupling and cross-caloric effect around a tetracritical point in multiferroic SrMnO3 12.08.2019 Dublin, Ireland Edström Tomas Alexander;
European Meeting on Ferroelectricity Individual talk First-principles-based calculations of caloric effects in ferroelectrics and magneto-electric multiferroics 16.07.2019 Lausanne, Switzerland Ederer Claude;
ICAMS Seminar Individual talk First-principles-based calculations of caloric effects in ferroelectrics and multiferroics 04.07.2019 Bochum, Germany Ederer Claude;
ICTP Condenserd Matter and Statistical Physics Seminar Individual talk First-principles-based calculations of caloric effects in ferroelectrics and multiferroics 23.05.2019 Trieste, Italy Ederer Claude;
CECAM Workshop on ab initio spin modelling Poster First-Principles Based Strain-Temperature Dependent Multiferroic Phase Diagram of SrMnO3 26.11.2018 Lausanne, Switzerland Edström Tomas Alexander;
Thermag VIII - International Conference on Caloric Cooling Poster First-principles-based investigation of the electro-caloric effect 16.09.2018 Darmstadt, Germany Ederer Claude;
Gordon Research seminar Talk given at a conference First Principles Based Strain-Temperature Multiferroic Phase Diagram of SrMnO3 05.08.2018 Lewsiton, Maine, United States of America Edström Tomas Alexander;
Gordon research conference Poster First-Principles Based Strain-Temperature Dependent Multiferroic Phase Diagram of SrMnO3 05.08.2018 Lewiston, Maine, United States of America Edström Tomas Alexander;
International Conference on Magnetism Talk given at a conference The strain and temperature dependent phase diagram of SrMnO3 from first principles 19.07.2018 San Francisco, United States of America Ederer Claude;
Spring Meeting of the German Physical Society Talk given at a conference Magneto-electric coupling (and multi-caloric effects) in SrMnO3 14.03.2018 Berlin, Germany Ederer Claude;
APS March Meeting Talk given at a conference On the strain-temperature Multiferroic Phase Diagram of SrMnO3 05.03.2018 Los Angeles, United States of America Edström Tomas Alexander;
Departmental Seminar Individual talk n the strain-dependent multiferroic phase diagram and magnetoelectric coupling in SrMnO3 – Towards multicaloric effects 08.12.2017 Uppsala, Sweden Edström Tomas Alexander;
Danish Days on Caloric Materials and Devices Poster First-principles-based investigation of the electro-caloric effect 02.10.2017 Roskilde, Denmark Ederer Claude;
Danish Days on Caloric Materials and Devices Poster Magnetism, Ferroelectricity and Caloric Effects in SrMnO3 02.10.2017 Roskilde, Denmark Edström Tomas Alexander;
D-MATL Colloquium Individual talk Cool stuff with ferroics - towards future solid state refrigeration 12.07.2017 Zurich, Switzerland Ederer Claude;
Spring Meeting of the German Physical Society Talk given at a conference the electro-caloric effect in BaTiO3 from first principles 22.03.2017 Dresden, Germany Ederer Claude;
Spring Meeting of the German Physical Society Talk given at a conference Introduction to ferroic materials 19.03.2017 Dresden, Germany Ederer Claude;
Mini Symposium on Ultrafast Magnetization Dynamics Individual talk First-principles-based investigation of the electro-caloric effect in BaTiO3 23.02.2017 Uppsala University, Sweden Ederer Claude;


Abstract

The application/removal of an external electric or magnetic field to a material containing either electric or magnetic dipole moments decreases/increases the degree of orientational disorder (i.e. entropy) in the system. If the corresponding material is thermally isolated from the environment this leads to a change in temperature --- the so-called "electro-caloric" or "magneto-caloric" effects. It has been shown that temperature changes of several Kelvin can be achieved for example in thin films close to a first order ferroelectric phase transition. This observations has generated a lotof interest in using the electro-caloric effect for cooling applications. Solid state refrigerators have enormous potential for reducing electricity consumption, and thus the worldwide emission of greenhouse gases. Furthermore, the scalable mechanism opens up further applications such as cooling of microsystems based on thin films. However, in order to achieve this goal, optimized materials with large electro-caloric response within a suitable temperature interval have to be identified.In this project, we are using first principles-based simulations to identify the factors promoting large caloric response in thin film materials, and in particular to explore novel ways to enhance caloric response by utilizing cross-coupling between dielectric and magnetic degrees of freedom, i.e. by exploiting so-called "multi-caloric" effects. The use of multiferroic materials offers great potential for enhanced temperature- and entropy-changes, if the magnetic and ferroelectric degrees of freedom order simultaneously. In addition, multiferroic coupling and strain-tuning can be used to trigger the giant caloric response of certain magnetic materials via an applied electric field. Our simulations will clarify the underlying physical mechanisms and provide guidelines for future optimization of caloric effects.
-