Project

Back to overview

Quantum Information in Thermodynamics

Applicant Huber Marcus
Number 161351
Funding scheme Ambizione
Research institution GAP-Optique Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Theoretical Physics
Start/End 01.12.2015 - 30.11.2018
Approved amount 455'855.00
Show all

Keywords (3)

Entanglement; Quantum Information; Thermodynamics

Lay Summary (German)

Lead
Mit der zunehmenden experimentellen Kontrolle komplexer Quantensysteme und der gleichzeitigen, erfolgreichen Miniaturisierung sind Maschinen auf Quantenebene eine unausweichliche Perspektive. Inwiefern paradigmatische quantenmechanische Effekte in diesen eine Rolle spielen und in welcher Weise sie die Effizienz dieser beeinflussen können ist eine der zentralen Fragen in der Quantenthermodynamik. Dieses Projekt zielt darauf ab solide mathematische Methoden zu entwickeln die die Beantwortung dieser Fragen erheblich erleichtern sollen.
Lay summary
Ziel dieses Projekts ist (weiter-)Entwicklung mathematischer Methoden zur Beschreibung von thermodynamischen Prozessen auf Quantenebene. Um dieses übergeordnete Ziel zu erreichen ist das Projekt in drei Teile aufgeteilt. Zunächst sollen die generellen Methoden um genuine Quanteneffekte in komplexen Systemen zu detektieren und zu quantifizieren verbessert werden. Diese Resultate können auch in Quantenoptik-Experimenten Anwendung finden und im Allgemeinen ein weiterreichendes Verständnis der Quantenphysik erleichtern. Um diese und andere Methoden dann spezifisch in der statistischen Physik und Thermodynamik gebrauchen zu können sollen sie dann im zweiten Projektteil zu diesem Zweck angepasst werden. Im Detail sollen hier die, im Allgemeinen sehr rechenaufwendigen, Methoden für typische thermodynamische Objekte maßgeschneidert werden. Das kurzfristige Ziel hiervon sind also praktisch anwendbare Werkzeuge für die Charakterisierung von Quanteneffekten in großen Systemen. Diese sollen dann im finalen Projektteil verwendet werden um elementare thermodynamische Prozesse auf die genaue Rolle solcher Quanteneffekte hin zu untersuchen. Zu diesem Zweck sollen auch idealisierte Modelle von einfachen thermodynamischen Prozessen, wie Arbeitsextraktion oder Kühlung, auf Quantenebene entwickelt werden. Die Präsenz und Relevanz von Quanteneffekten in diesen Prozessen gibt Aufschluss darüber inwiefern eine quantenmechanische Beschreibung solcher Maschinen überhaupt notwendig ist und auf welche Weise sich Quanteneffekte manifestieren. Das ist insbesondere Notwendig um zu verstehen unter welchen Umständen solche Quanten-Maschinen in der Lage sind quantenmechanische Effekte, wie Überlagerungen und Verschränkung, auszunutzen um jenseits des klassisch vorstellbaren zu arbeiten und inwiefern sie andererseits durch diese beeinträchtigt sind.
Direct link to Lay Summary Last update: 05.11.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Heralded generation of maximal entanglement in any dimension via incoherent coupling to thermal baths
Tavakoli Armin, Haack Géraldine, Huber Marcus, Brunner Nicolas, Brask Jonatan Bohr (2018), Heralded generation of maximal entanglement in any dimension via incoherent coupling to thermal baths, in Quantum, 2, 73-73.
Characterizing Genuine Multilevel Entanglement
Kraft Tristan, Ritz Christina, Brunner Nicolas, Huber Marcus, Gühne Otfried (2018), Characterizing Genuine Multilevel Entanglement, in Physical Review Letters, 120(6), 060502-060502.
Quantification of multidimensional entanglement stored in a crystal
Tiranov Alexey, Designolle Sébastien, Cruzeiro Emmanuel Zambrini, Lavoie Jonathan, Brunner Nicolas, Afzelius Mikael, Huber Marcus, Gisin Nicolas (2017), Quantification of multidimensional entanglement stored in a crystal, in Physical Review A, 96(4), 040303-040303.
Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?
Erker Paul, Mitchison Mark T., Silva Ralph, Woods Mischa P., Brunner Nicolas, Huber Marcus (2017), Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?, in Physical Review X, 7(3), 031022-031022.
Genuine-multipartite entanglement criteria based on positive maps
Clivaz Fabien, Huber Marcus, Lami Ludovico, Murta Gláucia (2017), Genuine-multipartite entanglement criteria based on positive maps, in Journal of Mathematical Physics, 58(8), 082201-082201.
Quantifying high dimensional entanglement with two mutually unbiased bases
Erker Paul, Krenn Mario, Huber Marcus (2017), Quantifying high dimensional entanglement with two mutually unbiased bases, in Quantum, 1, 22-22.
Quantifying Photonic High-Dimensional Entanglement
Martin Anthony, Guerreiro Thiago, Tiranov Alexey, Designolle Sébastien, Fröwis Florian, Brunner Nicolas, Huber Marcus, Gisin Nicolas (2017), Quantifying Photonic High-Dimensional Entanglement, in Physical Review Letters, 118(11), 110501-110501.
No-Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems
Perarnau-Llobet Martí, Bäumer Elisa, Hovhannisyan Karen V., Huber Marcus, Acin Antonio (2017), No-Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems, in Physical Review Letters, 118(7), 070601-070601.
Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction
Hofer Patrick P., Perarnau-Llobet Martí, Brask Jonatan Bohr, Silva Ralph, Huber Marcus, Brunner Nicolas (2016), Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction, in Physical Review B, 94(23), 235420.
Bipartite depolarizing maps
Lami Ludovico, Huber Marcus (2016), Bipartite depolarizing maps, in Journal of Mathematical Physics, 57(9), 092201-092201.
Energetics of correlations in interacting systems
Friis Nicolai, Huber Marcus, Perarnau-Llobet Martí (2016), Energetics of correlations in interacting systems, in Physical Review E, 93(4), 042135.
Heisenberg-Weyl Observables: Bloch vectors in phase space
Asadian Ali, Erker Paul, Huber Marcus, Klöckl Claude (2016), Heisenberg-Weyl Observables: Bloch vectors in phase space, in Physical Review A, 94(1), 010301.
Multi-photon entanglement in high dimensions
Malik Mehul, Erhard Manuel, Huber Marcus, Krenn Mario, Fickler Robert, Zeilinger Anton (2016), Multi-photon entanglement in high dimensions, in Nature Photonics, 10(4), 248-252.
Passivity and practical work extraction using Gaussian operations
Brown Eric G, Friis Nicolai, Huber Marcus (2016), Passivity and practical work extraction using Gaussian operations, in New Journal of Physics, 18(11), 113028-113028.
Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States
Sentís Gael, Eltschka Christopher, Gühne Otfried, Huber Marcus, Siewert Jens (2016), Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States, in Physical Review Letters, 117(19), 190502.
Realising a quantum absorption refrigerator with an atom-cavity system
Mitchison Mark T, Huber Marcus, Prior Javier, Woods Mischa P, Plenio Martin B (2016), Realising a quantum absorption refrigerator with an atom-cavity system, in Quantum Science and Technology, 1(1), 015001-015001.
Should Entanglement Measures be Monogamous or Faithful?
Lancien Cécilia, Di Martino Sara, Huber Marcus, Piani Marco, Adesso Gerardo, Winter Andreas (2016), Should Entanglement Measures be Monogamous or Faithful?, in Physical Review Letters, 117(6), 060501.
Steering Maps and Their Application to Dimension-Bounded Steering
Moroder Tobias, Gittsovich Oleg, Huber Marcus, Uola Roope, Gühne Otfried (2016), Steering Maps and Their Application to Dimension-Bounded Steering, in Physical Review Letters, 116(9), 090403.
Superactivation of quantum steering
Quintino Marco Túlio, Brunner Nicolas, Huber Marcus (2016), Superactivation of quantum steering, in Physical Review A, 94(6), 062123.
Temporal Multimode Storage of Entangled Photon Pairs
Tiranov Alexey, Strassmann Peter C., Lavoie Jonathan, Brunner Nicolas, Huber Marcus, Verma Varun B., Nam Sae Woo, Mirin Richard P., Lita Adriana E., Marsili Francesco, Afzelius Mikael, Bussières Félix, Gisin Nicolas (2016), Temporal Multimode Storage of Entangled Photon Pairs, in Physical Review Letters, 117(24), 240506.
The role of quantum information in thermodynamics—a topical review
Goold John, Huber Marcus, Riera Arnau, Rio Lídia del, Skrzypczyk Paul (2016), The role of quantum information in thermodynamics—a topical review, in Journal of Physics A: Mathematical and Theoretical, 49(14), 143001-143001.

Collaboration

Group / person Country
Types of collaboration
Prof. Andreas Winter/UAB Barcelona Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. Nicolas Gisin/Universite Geneve, Schweiz Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Otfried Gühne/University of Siegen Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Stefan Wolf/ USI Lugano Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
Prof. Anton Zeilinger/IQOQI Vienna Austria (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Nicolas Brunner/ University of Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Antonio Acin/ICFO Barcelona Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Quantum Information Theory and Mathematical Physics Talk given at a conference The thermodynamics of correlations 30.08.2017 Budapest, Hungary Huber Marcus; Clivaz Fabien;


Self-organised

Title Date Place

Abstract

Quantum information theory is an exciting and active interdisciplinary field of research with current results branching into different areas, from computer science and pure mathematics to applications in condensed matter physics. The main aim of this project is improve the techniques developed in quantum information science in order to make them more suitable for investigations into the foundation of statistical physics. This will not only lead to further insights into the very nature of physical processes governing our world, but, inspired by the impact of quantum effects on information processing, potentially pave the way to understanding and designing quantum machines that go beyond the limitations of classical thermodynamics. As such the project lies at the heart of quantum information with a deep connection to statistical physics and thermodynamics, and the goal of analysing the distinctively quantum features of complex systems and characterizing relevant quantum resources in order to advance the fundamental understanding of physics in the quantum regime. It is divided into three work packages, each with a different level of potential impact and risk. The first work package is the backbone of the project where mathematical tools for characterizing quantum resources, such as entanglement and non-locality, shall be developed and improved. In the second work package other potential candidates for relevant genuine quantum features shall be surveyed and the mathematical characterization of all such resources shall be adapted to be better suited for tackling some of the most challenging problems in quantum thermodynamics today. This is the aim of the third and final work package, where one of the main questions that will be addressed in this context is “What is the role of quantum effects in quantum thermodynamics?”. The answers to this question will be the basis of a better understanding how quantum machines or processes might harness quantum resources to enable performance beyond the classically possible and also provide a fundamental understanding of statistical physics at the quantum level.
-