Project

Back to overview

Quantentransport Phänomene in Nanostrukturierten Devices

English title Quantum Transport Phenomena in Nanoscaled Devices
Applicant Schönenberger Christian
Number 160152
Funding scheme Project funding (Div. I-III)
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.04.2015 - 31.03.2017
Approved amount 600'000.00
Show all

Keywords (10)

Superconductivity; Electronic Properties of Nanostructures; Charge and Spin Transport in Nanostructures; Spintronics; Nanoelectronics; Graphene; Carbon Nanotubes; Semiconducting Nanowires; Quantum Electronics; Quantum Transport

Lay Summary (German)

Lead
Quantenelektronik mittels nanoskaligen Materialien
Lay summary

In dem vom Schweizerischen Nationalfonds geförderten Projekt untersuchen wir nanostrukturierte Materialien, welche zum Studium von neuartigen Quantenzuständen und deren Nutzbarkeit für die Elektronik und Kommunikation dienen. Bei den Ausgangsmaterialien konzentrieren wir uns auf halbleitende Nanodrähte, Kohlenstoff-Nanoröhren und Graphene. Unser Ziel besteht zunächst darin, die elektronischen Eigenschaften dieser Materialien zu optimieren und dann durch eine geschickte Kombination neue Funktionalitäten zu generieren und zu untersuchen. Als Beispiel kann der Spin eines Elektrons dienen. Der Spin ist die kleinste magnetische Einheit. Man kann diese Einheit als ultimative magnetische Speichereinheit ansehen. Man kann aber den Spin mittels Elektroden auch manipulieren und dadurch Operationen realisieren. In diesem Kontext versuchen wir zum Beispiel zwei Elektronen miteinander zu verschränken und diese neuartigen Zustände bei Gigahertz Frequenzen zu untersuchen und zu manipulieren. Wir erarbeiten dabei Grundlagen für eine zukünftige Quantenelektronik.

Direct link to Lay Summary Last update: 05.04.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
A success story
C. Möller, C. Schönenbeger (2016), A success story, in Nature Nanotechnology, 11, 908.
Comparative study of single and multi domain CVD graphene using large-area Raman mapping and electrical transport characterization
K. Thodkar, M. El Abbassi, F. Lüönd, F. Overney, C. Schönenberger, B. Jeanneret, M. Calame (2016), Comparative study of single and multi domain CVD graphene using large-area Raman mapping and electrical transport characterization, in physica status solidi (RRL), 10(11), 807.
Cooper-Paare tunneln durch einen Quantenpunkt
A. Baumgartner, J. Gramich, C. Schönenberger (2016), Cooper-Paare tunneln durch einen Quantenpunkt, in Physik in unserer Zeit, 47(2), 62.
Full characterization of a carbon nanotube parallel double quantum dot
G. Abulizi, A. Baumgartner, C. Schönenberger (2016), Full characterization of a carbon nanotube parallel double quantum dot, in Physica Status Solidi B, 253(12), 2428.
Gate-controlled conductance enhancement from quantum Hall channels along graphene pn junctions
E. Tovari, P. Makk, M.-H. Liu, P. Rickhaus, Z. Kovas-Krausz, C. Schönenberger, S. Csonka (2016), Gate-controlled conductance enhancement from quantum Hall channels along graphene pn junctions, in Nanoscale, 8(47), 19910.
Magnetoresistance engineering and singlet/triplet switching in {InAs} nanowire quantum dots with ferromagnetic sidegates
F{á}}bi{á}}n G., Makk P., Madsen M. H., Nygård J., Schönenberger C., Baumgartner A. (2016), Magnetoresistance engineering and singlet/triplet switching in {InAs} nanowire quantum dots with ferromagnetic sidegates, in Physical Review B, 94(19), 195415-195415.
Signatures of single quantum dots in graphene nanoribbons within the quantum Hall regime
E. Tovari, P. Makk, P. Rickhaus, C. Schönenberger, S. Csonka (2016), Signatures of single quantum dots in graphene nanoribbons within the quantum Hall regime, in Nanoscale, 8, 11480.
Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices
J. Gramich, A. Baumgartner, C. Schönenberger (2016), Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices, in Appl. Phys. Lett., 108(17), 172604.
Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts
G. Fülöp, S. d'Hollosy, L. Hofstetter, A. Baumgartner, J. Nygard, C. Schönenberger, S. Csonka (2016), Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts, in Nanotechnology, 27(19), 195303.
Clean carbon nanotubes coupled to superconducting impedance-matching circuits
V. Ranjan, G. Puebla-Hellmann, M. Jung, T. Hasler, A. Nunenkamp, M. Muoth, C. Hierold, A. Wallraff, C. Schönenberger (2015), Clean carbon nanotubes coupled to superconducting impedance-matching circuits, in Nature Comm., 6, 7165.
Gate tuneable beamsplitter in ballistic graphene
P. Rickhaus, P. Makk, M.-H. Liu, K. Richter, C. Schönenberger (2015), Gate tuneable beamsplitter in ballistic graphene, in Appl. Phys. Lett., 107(25), 251901.
Gate tuneable beamsplitter in ballistic graphene
Rickhaus Peter, Makk Peter, Liu Ming-Hao, Richter Klaus, Schoenenberger Christian (2015), Gate tuneable beamsplitter in ballistic graphene, in APPLIED PHYSICS LETTERS, 107(25), 251901.
Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots
d'Hollosy S., Jung M., Baumgartner A., Guzenko V. A., Madsen M. H., Nygård J., Schönenberger C. (2015), Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots, in Nano Letters, 15(7), 4585-4590.
Guiding of Electrons in a Few-Mode Ballistic Graphene Channel
P. Rickhaus, M.-H. Liu, P. Makk, R. Maurand, S. Hess, S. Zihlmann, M. Weiss, K. Richter, C. Schönenberger (2015), Guiding of Electrons in a Few-Mode Ballistic Graphene Channel, in Nano Lett., 15(9), 5819.
Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter
Fueloep G., Dominguez F., d'Hollosy S., Baumgartner A., Makk P., Madsen M. H., Guzenko V. A., Nygard J., Schonenberger C., Levy Yeyati A., Csonka S. (2015), Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter, in PHYSICAL REVIEW LETTERS, 115(22), 227003.
Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter
G. Fülöp, F. Domínguez, S. d'Hollosy, A. Baumgartner, P. Makk, M.H. Madsen, V.A. Guzenko, J. Nygard, C. Schönenberger, A. Levy Yeyati, S. Csonka (2015), Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter, in Phys. Rev. Lett., 115(22), 227003.
Point contacts in encapsulated graphene
C. Handschin, G. Fülöp, P. Makk, S. Blanter, M. Weiss, K. Watanabe, T. Taniguchi, S. Csonka, C. Schönenberger (2015), Point contacts in encapsulated graphene, in Appl. Phys. Lett., 107(18), 183108.
Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot
J. Gramich, A. Baumgartner, C. Schönenberger (2015), Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot, in Phys. Rev. Lett., 115(21), 216801.
Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot
Gramich J., Baumgartner A., Schoenenberger C. (2015), Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot, in PHYSICAL REVIEW LETTERS, 115(21), 216801.
Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching
T. Hasler, M. Jung, V. Ranjan, G. Puebla-Hellmann, A. Wallraff, C. Schönenberger (2015), Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching, in Phys. Rev. Appl., 4(5), 054002.
Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching
Hasler T., Jung M., Ranjan V., Puebla-Hellmann G., Wallraff A., Schoenenberger C. (2015), Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching, in PHYSICAL REVIEW APPLIED, 4(5), 054002.

Collaboration

Group / person Country
Types of collaboration
Universität Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Budapest University of Technology and Economics Hungary (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
ENS France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Niels Bohr Institute, University of Copenhagen Denmark (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
PSI Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Associated projects

Number Title Start Funding scheme
172638 Quantentransport Phänomene in Nanodrähten 01.04.2017 Project funding (Div. I-III)
150774 Quantum Entanglement in Nanoelectronic Devices by Noise Measurements 01.01.2014 R'EQUIP
146139 Quantentransport Phänomene in Nanostrukturierten Devices 01.04.2013 Project funding (Div. I-III)

Abstract

Entanglement plays a central role in the emerging quantum technology. With original experiments the nanoelectronics group at the University of Basel (www.nanoelectronics.ch) created a new source of spin-entangled electron pairs based on a superconductor. In this device, known as the Cooper-pair splitter (CPS), the two electrons of a Cooper-pair are made to tunnel into two different quantum dots (QDs). The splitting is induced by Coulomb interaction through the QDs. Though we could demonstrate a remarkably high splitting efficiency of > 90%, there are many device parameters that are barely controlled and understood. For example, we currently cannot control all tunneling couplings. Furthermore, there are many open questions with regard to the proximity effect, the role of spin-orbit interaction and valley splitting, and additionally, no entanglement test could be realized until today. This proposal addresses these questions using three different material system: semiconducting nanowires (NWs), carbon nanotubes (CNTs) and graphene. These low dimensional systems have attracted a growing interest in recent years due to the unique properties of charge and spin which stem from strong spin-orbit interaction in NWs and chiral, neutrino-like properties of the quasiparticles in grapheme and CNTs. The combination of high-quality low-dimensional materials, such as NWs, CNTs and graphene with nanostructured superconducting and ferromagnetic materials in so-called hybrid devices not only allows the realization and study of CPS, but also provides versatile experimental platforms for the exploration of a wide range of novel physical phenomena, including unconventional superconductivity, proximity-induced electron correlations and Majorana fermions. Specifically, we will work on improved tunable CPS devices, entanglement measurements using non-collinear magnetic fields, proximity-induced coupling between the two QDs, where so-called “poor-man’s” Majorana states can emerge. Information on the group can be found under: www.nanoelectronics.ch
-