Project

Back to overview

Unraveling the influence of climate change on wood formation and resulting tree rings (CLIMWOOD)

English title Unraveling the influence of climate change on wood formation and resulting tree rings (CLIMWOOD)
Applicant Frank David Charles
Number 160077
Funding scheme Project funding (Div. I-III)
Research institution Swiss Federal Research Inst. WSL Direktion
Institution of higher education Swiss Federal Institute for Forest, Snow and Landscape Research - WSL
Main discipline Other disciplines of Environmental Sciences
Start/End 01.09.2015 - 31.08.2016
Approved amount 103'460.00
Show all

All Disciplines (3)

Discipline
Other disciplines of Environmental Sciences
Ecology
Agricultural and Forestry Sciences

Keywords (7)

mechanistic modelling; maximum latewood density; foreest ecosystems; dendroclimatology; wood formation; climate; tree growth

Lay Summary (Italian)

Lead
Valutando l’effetto dei cambiamenti climatici sulla formazione del legno e le sue proprietàIl corso del clima, i regimi di temperatura e idroclimatici, e i loro effetti sugli ecosistemi e la società, sono processi incerti. Il futuro degli ecosistemi forestali è intimamente connesso a queste domande e risposte. Gli anelli di crescita annuali delle piante e la loro densità sono importanti archivi del clima antecedente le misurazioni strumentali. Ciononostante, rimangono notevoli incertezze su come la crescita e il funzionamento delle piante saranno determinati dall’inevitabile cambiamento climatico. Il progetto CLIMWOOD propone di migliorare la comprensione meccanicistica del processo di formazione del legno: un elemento essenziale per il funzionamento delle piante e degli ecosistemi, e il mezzo per il quale il segnale climatico viene registrato nella struttura legnosa degli anelli di crescita. Per raggiungere quest’obiettivo collegheremo dati esistenti con l’uso di un nuovo modello.
Lay summary
Questa ricerca migliorerà la conoscenza dei processi di formazione del legno. In particolare, si incrementerà la comprensione di come le caratteristiche anatomiche delle cellule dello xilema sono determinate dal tasso e dalla durata dei processi cellular di espansione e di deposito della parete.

Lo studio farà uso di misurazioni inter- e intra-annuali dell’anatomia del legno (dimensioni cellulari, spessore della parete cellulare e densità legnosa) e di dati climatici raccolti in tre “super-siti” (due nelle Alpi e uno nelle montagne dei Vosgi). Modelli additivi generalizzati saranno applicati per ricostruire la cinetica (incluso la tempistica, la durata, e il tasso di crescita) per ogni cellula formatasi lungo l’anello. In seguito, si attribuirà come le condizioni climatiche influiscono i processi di formazione e quindi determinano le caratteristiche anatomiche dello xilema.

Questo modello meccanicistico sarà generalizzato applicando, invertendo (cioè inferendo le condizioni climatiche dalle caratteristiche anatomiche), e testando il concetto sviluppato sui “super-siti”, su una collezione i) di dati cellulari anatomici e ii) di profili densitometrici provenienti da tutto l’emisfero settentrionale. Questi archivi spazio-temporali rappresentano una risorsa poco sfruttata e molto valida per estrarre quantificazioni della cinetica della formazione del legno con rilevanza per la comprensione delle interazioni tra clima, cicli biogeochimici, e funzionamento degli ecosistemi forestali.    

CLIMWOOD, collegando in modo meccanicistico clima, formazione e struttura legnosa, e funzionamento forestale, migliorerà la comprensione di come la crescita delle piante verrà influenzata dai cambiamenti climatici previsti. Chiarificando le basi biologiche di come e perché il clima determina l’anatomia degli anelli annuali e le sue proprietà, non solo migliorerà l’interpretazione delle ricostruzioni climatiche, ma anche contribuirà alla valutazione della crescita futura delle piante.

Direct link to Lay Summary Last update: 12.06.2015

Lay Summary (English)

Lead
The historical course of climatic fluctuations, the future temperature and hydroclimatic regimes, and the associated impacts on ecosystems and society, all harbour significant unknowns. Forest ecosystems are intimately coupled with these questions, as well as, their answers. Tree-ring width and maximum latewood density are arguably the most important high-resolution climate archive shedding light into pre-instrumental climate fluctuations during the past centuries to millennia. At the same time, there remain considerable uncertainties how tree growth and function will be impacted by inevitable climate change. The proposed project aims to advance mechanistic understanding of wood formation processes - a crucial component of tree and ecosystem functioning and the means though which climate signals are recorded in tree-ring proxy archives. To reach this objective, we will hierarchically exploit and couple existing measurements and databases within a novel modeling framework.
Lay summary

This research will advance kinetic modeling of the wood formation processes: namely elucidate and quantify how the final wood structure, and intra- and inter-annual variability thereof, can be explained by changes in the rate and duration of cell enlargement and wall deposition processes.

Our project will focus on datasets of conifer wood formation from three "super-sites" (two in the Alps, and one in the Vosges Mountains) including wood anatomical measurements (cell diameter, cell-wall thickness, and wood density) and climatic data. Generalized Additive Models will be used derive developmental kinetics, including the timing, duration, and growth rate for each individual cell along the annual tree rings. We will then attribute the influence of climatic conditions on cell development kinetics and resulting tree ring characteristics (tracheid morphology and wood density).

Our mechanistic modeling framework, will then be generalized through application, inversion (i.e., inferring climatic and kinetic variability from wood anatomical features), and testing on widespread datasets of i) tracheid morphology and ii) wood density from across the Northern Hemisphere. These spatially-expansive archives are an untapped resource to extract wood formation kinetics on a global-scale of relevance for the interactions among climate, biogeochemical cycling, and tree functioning within forest ecosystems.

By providing a mechanistic modeling framework linking climate, wood formation, and wood structure and function in trees, the project will increase our knowledge of how projected 21st century climate change will influence tree growth. By clarifying the biological basis for how and why climatic conditions impact tree-ring anatomy and properties, we will not only improve the interpretation and reliability of past-climatic reconstructions, but also the estimation of future tree growth.

Direct link to Lay Summary Last update: 12.06.2015

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers
Björklund Jesper, Seftigen Kristina, Schweingruber Fritz, Fonti Patrick, von Arx Georg, Bryukhanova Marina V., Cuny Henri E., Carrer Marco, Castagneri Daniele, Frank David C. (2017), Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers, in New Phytologist, 216(3), 728-740.
Biological basis of wood formation: a crash course
Rathgeber Cyrille, Cuny Henri, Fonti Patrick (2016), Biological basis of wood formation: a crash course, in Frontiers in Plant Sciences, 7, 734.

Collaboration

Group / person Country
Types of collaboration
Cyrille Rathgeber / French National Institute for Agronomy Research (INRA-Nancy) France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Georg von Arx / Swiss Federal Research Institute WSL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Association for Tropical Biology and Conversation Talk given at a conference Flexible dynamics of conifer wood formation mitigates the impact of climatic variability 19.06.2016 Montpellier, France Cuny Henri;
COST STReESS meeting Talk given at a conference Woody biomass production lags stem girth increase by over one month in coniferous forests 04.11.2015 Kranjska Gora, Slovenia Cuny Henri; Fonti Patrick;


Associated projects

Number Title Start Funding scheme
150205 Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) 01.06.2014 Project funding (Div. I-III)
121859 INtra-seasonal Tree growth along Elevational GRAdients in the European ALps (INTEGRAL) 01.03.2009 Project funding (Div. I-III)

Abstract

Tree-ring width and maximum latewood density are the most important high-resolution climate archive shedding light into pre-instrumental climate fluctuations. At the same time, there remain considerable uncertainties how tree growth and function will be impacted by climate change. The proposed project aims to advance mechanistic understanding of wood formation - a crucial component of tree and ecosystem functioning and the means though which climate signals are recorded in tree-ring proxy archives. To reach this objective, we will hierarchically exploit and couple existing measurements and databases within a novel modeling framework. Research will initially focus on multi-annual datasets of wood formation monitoring at three “super-sites” (two in the Alps, and one in the Vosges Mountains) previously used to infer cambial phenology. These datasets now include cellular observations of tree-ring formation of the main European conifer species along altitudinal gradients, in concert with wood anatomical measurements, leaf phenology monitoring, and climatic recordings. Generalized Additive Models (GAMs) will be used to quantify cell developmental kinetics, including the timing, duration, and rate of the developmental processes for each individual cell along the annual tree rings. We will then attribute the influence of climatic conditions on cell developmental kinetics and resulting tree ring characteristics (tracheid morphology and wood density) thereby advancing mechanistic formulations for tree growth.Our improved mechanistic modeling framework is suitable for generalization including application, inversion (i.e., inferring climatic and kinetic variability from wood anatomical features), and testing on two data sources spanning the Northern Hemisphere: i) tracheid morphology and ii) wood density. Increasingly abundant wood anatomical measurements (e.g., via the ROXAS platform), and existing archives of wood density variation (e.g., > 500 sites on the International Tree-Ring Databank only analyzed for maximum ring density) are a largely untapped resource to extract anatomical variation and associated environmental drivers. We propose to exploit these datasets to infer cellular properties, developmental kinetics, and improve quantification of climatic controls (& extraction thereof) on wood formation processes for diverse ecosystems across the Northern Hemisphere. By providing a mechanistic modeling framework linking climate, wood formation, and wood structure and function in trees, our project will fundamentally advance knowledge for the impacts of climate change on tree growth. This will not only advance the interpretation and reliability of climatic reconstructions (e.g., why and how maximal latewood density - a crucial but still poorly understood tree-ring proxy for temperature - records environmental variation) but also improve projections of future tree growth. Research outcomes will be of high relevance to the broader scientific community and stakeholders requiring knowledge of the interactions among climate, biogeochemical cycling, and tree functioning within forest ecosystems.
-