Back to overview

Flow structure and coarse sediment flux at tributary junctions

English title Flow structure and coarse sediment flux at tributary junctions
Applicant Lane Stuart
Number 160020
Funding scheme Project funding (Div. I-III)
Research institution Institut des dynamiques de la surface terrestre Université de Lausanne
Institution of higher education University of Lausanne - LA
Main discipline Geomorphology
Start/End 01.10.2015 - 30.09.2019
Approved amount 262'872.00
Show all

All Disciplines (2)

Fluid Dynamics

Keywords (4)

Tributary Junctions; Rivers; Sediment Transport; Flow Structures

Lay Summary (French)

Quelle est la dynamique des sédiments au sein de la jonction des rivières? Sites où les rivières se joignent (appelés jonctions ou confluences) sont souvent des sites où le risque d'inondation peut être élevée, et également d'une importance écologique. Ce projet porte sur la façon dont se déplace les sédiments au sein des jonctions, quelque chose que nous comprenons étonnamment mal.
Lay summary

Les tributaires des rivières se joignent à ce qu'on appelle les «jonctions» ou «confluences». On sait que lorsque les rivières se joignent, il existe une variation de la géométrie à l'aval. Nous savons aussi que la jonction des rivières provoque la formation de processus en trois dimensions qui contribuent à expliquer cette géométrie. Mais, il n'est que l'écoulement et le mélange qui est important aux jonctions. Les sédiments sont également livrés. Parfois, le taux de livraison des sédiments dans la petite rivière peut être beaucoup plus grande que ce qui peut être transporté dans la rivière principale, surtout si ce dernière est moins raide. Cela peut conduire à des problèmes de sédimentation. De même, nous savons que les jonctions des rivières peuvent créer une mosaïque complexe de l'habitat, de l'importance écologique. Pour comprendre ces processus, nous avons besoin d'une bien meilleure compréhension de la façon dont se déplace les sédiments au sein des jonctions. Dans cette étude, nous allons mesurer un grand nombre de jonctions dans le système du Rhône. Nous prévoyons d'appliquer une nouvelle technique qui nous permet de mesurer, simultanément, les sédiments fins et les sédiments grossiers (se déplaçant à la lit) afin que nous puissions décrire comment se déplace sédiments au sein de la jonction. Nous allons expliquer les observations, compte tenu des changements dans la livraison des sédiments avec les saisons. Nous allons appliquer des modèles numériques afin de mieux quantifier le mouvement des sédiments au sein des jonctions et d'établir les conditions lorsque cela devient moins efficace. Nos résultats seront utiles pour la gestion des risques d'inondation et aussi pour la restauration des rivières.

Direct link to Lay Summary Last update: 01.05.2015

Lay Summary (English)

How does sediment move through the junctions of rivers? Sites where rivers join (known as junctions or confluences) are often sites where flood risk can be elevated, and also of ecological importance. This project addresses how sediment moves through them, something that we understand surprisingly poorly.
Lay summary

Rivers join at what are known as "junctions" or "confluences". We know that when rivers join, there is a change in the geometry of the channel downstream. We also know that the junction of rivers causes the formation of three dimensional flow processes that help to explain this geometry. But, it is not just river flows that mix at junctions. Sediment is also delivered. Sometimes, the delivery rate in the smaller river may be much bigger than that which can be transported in the main river, especially if the latter is less steep. This can lead to sedimentation problems. Similarly, we know that the junctions of rivers may create a complex mosaic of habitat, of ecological importance. To understand these processes, we need a much better understanding of how sediment moves through junctions. In this study, we will be studying a large number of river junctions with the Rhône system. We plan to apply a novel technique that allows us to measure, simultaneously, fine sediment and coarse sediment (moving at the bed) so that we can describe how sediment moves through the junction. We will explain our observations, considering how sediment delivery changes with the seasons. We will apply sophisticated numerical-mathematical models to further quantify sediment movement through the junctions and to establish those conditions when this becomes less effective. Our results will be of value for managing flood risk and also for river restoration.

Direct link to Lay Summary Last update: 01.05.2015

Responsible applicant and co-applicants


Name Institute


Evaluation of aDcp processing options for secondary flow identification at river junctions
Moradi Gelare, Vermeulen Bart, Rennie Colin D., Cardot Romain, Lane Stuart N. (2019), Evaluation of aDcp processing options for secondary flow identification at river junctions, in Earth Surface Processes and Landforms, esp.4719-esp.4719.


Typology of Alpine stream junctions

Author Lane, Stuart
Persistent Identifier (PID) Confluences
Repository GitHub
Datasets on Alpine stream junction morphology and their relationship to driving variables like geology, altitude etc.


Group / person Country
Types of collaboration
Dr. Colin Rennie, Ottawa University Canada (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Dr. Peter Molnar, ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Dr. RJ Hardy, Durham University Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
European Geoscience Union 2018 Poster River confluences in mountain systems : is temporal variability of discharge ratio linked to the geomorphic attributes of the contributing catchments Romain Cardot, Gelare Moradi, Simone Fatichi, Peter Molnar, François Mettra, Stuart N. Lane 09.04.2018 Vienna, Austria Cardot Romain;
European Geoscience Union, 2018 Poster Temporal and spatial variability of bedload transport at a medium-sized confluence, non-intrusive acoustic measurements with an aDcp. 09.04.2018 Vienna, Austria Cardot Romain;
European Geoscience Union 2018 Poster Secondary circulation in river junctions even at very low flow momentum ratios: the legacy effects of point bar formation. Gelare Moradi, Colin Rennie, Bart Vermeulen, Romain Cardot, and Stuart Lane 09.04.2018 Vienna, Austria Cardot Romain;
River, Coastal and Estuarine Morphodynamics 2017 Poster River confluences in mountain systems : is temporal variability of discharge ratio linked to the geomorphic attributes of the contributing catchments Romain Cardot, Gelare Moradi, Simone Fatichi, Peter Molnar, François Mettra, Stuart N. Lane 18.09.2017 Trento, Italy Cardot Romain;
European Geosciences Union 2017 Poster Field Data Collection Methods and Data Processing of the Influence of Low Momentum Ratio and the Rate of Sediment Transport Forcing on Confluence Hydrodynamics, Morphodynamics and Mixing. G. Moradi, R. Cardot, C.D. Rennie, F. Mettra, S.N. Lane 24.04.2017 Vienna, Austria Lane Stuart; Cardot Romain;

Associated projects

Number Title Start Funding scheme
183301 High resolution shallow water multibeam echosounder for river and lake research 01.12.2018 R'EQUIP
147689 SEDFATE:Sediment fate in a changing watershed during the Anthropocene 01.02.2014 Sinergia


The junctions of tributaries and rivers are now recognised as fundamental controls on sediment flux through river basins, as biodiversity hotspots and as critical controls on river basin connectivity. Strahler (1957) stream ordering draws attention to a fundamental observation: at the vast majority of tributary junctions in a drainage basin network, one of the tributaries is smaller (width, depth, discharge), sometimes, much smaller, than the main stem. Such differences can be expressed in terms of a discharge (Q) ratio (Qt/Qm, where t = tributary; m = main stem); or a momentum ratio** (with equal densities, conventionally described as Mr = QtUt/QmUm, where U = section averaged-velocity). Survey of the literature shows: in general (1) that there have been very few studies of sediment flux at tributary junctions, notwithstanding the importance of this flux for continuity in sediment transport; and, specifically, (2) that the majority of studies (36 out of 57) of tributary junctions have been concerned with momentum ratios greater than 1, despite the likely dominance of junctions with tributary momentum ratios less than one, and perhaps substantially less than 1. Laboratory experiments published by the LCH at the EPFL suggest that the flow structure and sediment flux dynamics in low Mr tributary junctions may be substantially different to those described by classical models of tributary junctions. Yet, such junctions may be crucial for moderating the flux of sediment from tributaries to the main stem, and implicated in a range of management problems, such as problems of rapid sedimentation in tributaries and associated flooding, during extreme rainfall events. This project has the general aim of understanding the dynamics of sediment flux at medium-sized tributary junctions and will address the following objectives: (1) to provide a systematic quantification and analysis at the drainage basin scale of the prevalence and characteristics of tributary junctions to identify the relative importance and characteristics of those with low momentum ratios; (2) using the database used in (1), to select a subset of tributary junctions for intensive and repeat measurement of sediment flux dynamics using state-of-the-art measurement technologies; and (3) to develop a mathematical representation of these dynamics to quantify and to simulate tributary response associated with these interaction, building on our recent work using discrete particle modelling. Through these three steps we will aim to assess two general sets of hypotheses: (1) that coarse sediment movement through tributary junctions, even in low Mr cases, is impacted upon by flow structure topographic forcing; and (2) that the classic Best (1988) model of tributary junctions can be modified and extended to represent a wider range of forcing conditions. As an additional benefit, this work will also evaluate the transferability of existing, published, laboratory-acquired findings to the field case.