Project

Back to overview

Hierarchisch strukturierte zellulose-basierte Komposite

English title Hierarchically structured cellulose-based composites
Applicant Studart André R.
Number 159906
Funding scheme Project funding (Div. I-III)
Research institution Departement Materialwissenschaft ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Material Sciences
Start/End 01.10.2015 - 30.09.2019
Approved amount 252'053.00
Show all

Keywords (6)

emulsion; cellulose nanocrystals; 3D-printing; hierarchically-structured composites; chemical modification; mechanical properties

Lay Summary (French)

Lead
LeadMost natural materials are composites based on polymers and anisotropic reinforcing particles, which are often organized in a hierarchical microstructure. Hierarchical structuring is a design strategy used in biological materials to achieve unusual set of mechanical properties through the implementation of different microstructural features at multiple lengths. Wood and bone are typical examples of hierarchically structured natural materials. The remarkable mechanical performance exhibited by biological systems has stimulated significant amount of research in the development and fabrication of bioinspired synthetic materials with unusual combination of mechanical properties. In this project, we will develop cellulose-based composites with hierarchical architectures reinforced at two different length scales.
Lay summary

Résumé simplifié

L’objectif de ce projet de recherche est de développer et d’étudier des matériaux composites à base de cellulose et ayant une structure hiérarchique, dont les microstructures ressemblent à celles de matériaux biologiques ayant des performances mécaniques élevées tels que le bois ou les os. L’étude des composites synthétiques développés dans ce projet nous permettra de mieux comprendre les relations structure-propriétés aux différents niveaux de l’architecture hiérarchique, offrant ainsi des lignes directrices pour la fabrication de matériaux plus résistants, plus forts, et plus légers. Malgré des connaissances étendues sur la composition et de la structure du bois à différentes échelles, il manque aujourd’hui une corrélation précise entre l’architecture hiérarchique du bois et ses performances mécaniques d’ensemble. Le nombre limité d’exemples présents dans la littérature reflète les difficultés liées à la mise en œuvre de telles microstructures hiérarchiques complexes dans des matériaux synthétiques à l’aide des méthodes de fabrication conventionnelles. En pratique, comprendre de quelle manière les contraintes mécaniques sont distribuées à travers les différents niveaux hiérarchiques et quantifier la contribution du mécanisme de dissipation d’énergie locale à la résistance globale du bois fourniraient des informations cruciales pour le la fabrication de matériaux composites avancés inspirés de l’architecture unique des plantes. Les résultats attendus dans le cadre de ce projet contribueront au développement des matériaux légers du futur, produits à partir de ressources renouvelables et durables. Ces matériaux auront un impact direct sur la minimisation de la demande en énergie et sur l’empreinte écologique des secteurs des transports et de la construction.

 

Direct link to Lay Summary Last update: 01.10.2015

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Dynamics of Cellulose Nanocrystal Alignment during 3D Printing
Hausmann Michael K., Rühs Patrick A., Siqueira Gilberto, Läuger Jörg, Libanori Rafael, Zimmermann Tanja, Studart André R. (2018), Dynamics of Cellulose Nanocrystal Alignment during 3D Printing, in ACS Nano, 12(7), 6926-6937.
Cellulose-Based Microparticles for Magnetically Controlled Optical Modulation and Sensing
HausmannMichael, HauserAlina, SiqueiraGilberto, LibanoriRafael, VehusheiaSigne Lin, SchürleSimone, ZimmermannTanja, StudartAndré R., Cellulose-Based Microparticles for Magnetically Controlled Optical Modulation and Sensing, in Small.
Complex-Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds
HausmannMichael, SiqueiraGilberto, LibanoriRafael, KokkinisDimitri, NeelsAntonia, ZimmermannTanja, StudartAndré R., Complex-Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds, in Advance Functional Materials.

Collaboration

Group / person Country
Types of collaboration
Max Planck Institute of Colloids and Interfaces Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Associated projects

Number Title Start Funding scheme
178941 Toolbox of functional bio-based inks: 3 D printing of novel multiscale structured composites inspired by nature 01.11.2018 Project funding (Div. I-III)

Abstract

Most natural materials are composites based on polymers and anisotropic reinforcing particles, which are often organized in a hierarchical microstructure. Hierarchical structuring is a design strategy used in biological materials to achieve unusual set of mechanical properties through the implementation of different microstructural features at multiple length scales. Another particular characteristic of biological composites is their multifunctionality. Using biologically-mediated self-assembling principles, natural systems like bone, seashells and trees have evolved their microstructural design at different levels of hierarchy to efficiently harness the load-bearing ability of their constituents and fulfill specific mechanical demands of their natural habitat.The remarkable mechanical performance exhibited by biological systems has stimulated significant amount of research in the development and fabrication of bioinspired synthetic materials with unusual combination of mechanical properties. The wide range of mechanical behavior of synthetic building blocks enables the engineer to tailor the mechanical performance of load-bearing structures simply by selecting a single component according to its mechanical response and compatibility with the fabrication process. However, translating the hierarchical features that are found in natural systems at the micro- and nano-scales to synthetic materials remains a huge challenge. The difficulties to implement such intricate hierarchical microstructure into artificial materials with conventional fabrication methods are reflected in the limited number of examples available in the literature.The goal of this research project is to develop and investigate hierarchically-structured cellulose-based composites whose microstructures resemble those of biological materials exhibiting superior mechanical performance, such as wood and bone. . The synthetic composites to be developed in this project will allow us to gain a deeper understanding over the structure-property relationships at multiple length scales in hierarchical architectures, thus providing guidelines for the fabrication of stronger, tougher and lighter composite materials. To achieve our goal, we will first extract cellulose nanocrystals with different aspect ratio (L/d) from different sources, namely wood pulp, bacterial cellulose and algae. Next, we will direct the assembly of the cellulose nanocrystals into micron-sized bundles using an emulsion-based technique. For this purpose, surface modification of cellulose nanocrystals will be performed to tailor the interaction between reinforcing elements and the interphase present in the bundles. The cellulose bundles will be magnetically modified and utilized as reinforcing elements to produce hierarchical composites with microstructures that can be tailored by applying magnetic assembly techniques and/or 3D- printing. Finally, the morphological and macromechanical properties of this new class of cellulose-composites will be assessed by standard characterization techniques such as scanning electronic microscoy (SEM), transmission electronic microscopy (TEM), quasi-static uniaxial mechanical tests and dynamic mechanical analysis (DMA). To gain insight into the cooperative deformation mechanisms at the different hierarchical levels, in-situ tensile testing will be combined with wide angle x-ray diffraction (WAXD) and small-angle x-ray scattering (SAXS) techniques in a synchrotron facility.
-