Project

Back to overview

Temporal dynamics of whole-brain neuronal networks

English title Temporal dynamics of whole-brain neuronal networks
Applicant Michel Christoph
Number 159705
Funding scheme Project funding (Div. I-III)
Research institution Département des neurosciences fondamentales Faculté de Médecine Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Neurophysiology and Brain Research
Start/End 01.05.2015 - 30.04.2019
Approved amount 474'000.00
Show all

All Disciplines (2)

Discipline
Neurophysiology and Brain Research
Other disciplines of Engineering Sciences

Keywords (3)

Electrophysiology; Brain Imaging; Resting states

Lay Summary (German)

Lead
Zeitliche Dynamik funktioneller Netzwerke im menschlichen Gehirn in Ruhe
Lay summary

Durch modern bildgebende Verfahren hat die funktionelle Hirnforschung am Menschen in den letzten Jahren zwei fundamentale Paradigmenwechsel erlebt, was das Verständnis höherer kognitiver Funktionen und ihre pathologischen Veränderungen betrifft. Zum einen wurde erkannt, dass Hirnfunktionen nicht bestimmten Hirnarealen zugeordnet werden kann, sondern vielmehr aus dem Zusammenspiel von verschiedenen Hirnarealen besteht, die in funktionellen Netzwerken verbunden sind. Zum anderen fand ein radikaler Wechsel statt was den Zustand des Gehirns in Ruhe betrifft: es wurde erkannt dass das Gehirn in Ruhe nicht inaktiv ist und passiv auf Information wartet, sondern dass es im Gegenteil in organisierter Weise aktiv ist um sich optimal auf ankommende Reize vorzubereiten.

Unser Projekt wird versuchen die zeitlich-räumliche Struktur dieser Ruhe-Netzwerke und ihre Störungen besser zu verstehen. Wir benutzen hochauflösende Elektroenzephalographie (EEG)  kombiniert mit funktioneller Magnetresonanztomographie (fMRI) und kombiniert mit direkten elektrophysiologischen Ableitungen im Gehirn. In Zusammenarbeit mit einer Grupee von Mathematikern in Exeter (GB) schlagen wir verschiedene neue Methoden vor um diese Netzwerke in Zeit und Raum zu charakterisieren. Wir werden eine grosse Anzahl schon registrierter Daten mit diesen neuen Methoden analysieren, Daten von gesunden Versuchspersonen aber auch von Patienten mit Epilepsie, Multipler Sklerose, Autismus, Depression, Schizophrenie und Patienten in Koma und unter Anästhesie.  Zusätzlich werden wir in Zusammenarbeit mit der Gruppe für Stereotaxie und funktionelle Neurochirurgie der Universitätsklinik Köln Patienten mit implantierten Elektroden in tiefen Hirnstrukturen ableiten und Störungen der Netzwerke in Patienten mit Parkinson, Tourette Syndrom, Zwangsstörungen, und Drogenabhängigkeit untersuchen.

 

 

 

Direct link to Lay Summary Last update: 13.04.2015

Responsible applicant and co-applicants

Employees

Project partner

Publications

Publication
Large-Scale 3-5 Hz Oscillation Constrains the Expression of Neocortical Fast Ripples in a Mouse Model of Mesial Temporal Lobe Epilepsy.
Sheybani Laurent, van Mierlo Pieter, Birot Gwénaël, Michel Christoph M, Quairiaux Charles (2019), Large-Scale 3-5 Hz Oscillation Constrains the Expression of Neocortical Fast Ripples in a Mouse Model of Mesial Temporal Lobe Epilepsy., in eNeuro, 6(1), 0494-18.20.
Subcortical electrophysiological activity is detectable with high-density EEG source imaging
Seeber Martin, Cantonas Lucia-Manuela, Hoevels Mauritius, Sesia Thibaut, Visser-Vandewalle Veerle, Michel Christoph M. (2019), Subcortical electrophysiological activity is detectable with high-density EEG source imaging, in Nature Communications, 10(1), 753-753.
EEG Source Imaging: A Practical Review of the Analysis Steps
Michel Christoph M., Brunet Denis (2019), EEG Source Imaging: A Practical Review of the Analysis Steps, in Frontiers in Neurology, 10, 325.
Directed functional connections underlying spontaneous brain activity
Coito Ana, Michel Christoph M., Vulliemoz Serge, Plomp Gijs (2019), Directed functional connections underlying spontaneous brain activity, in Human Brain Mapping, 40(3), 879-888.
EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review
Michel Christoph M., Koenig Thomas (2018), EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review, in Neuroimage, 180, 577-593.
From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging
Tomescu M.I., Rihs T.A., Rochas V., Hardmeier M., Britz J., Allali G., Fuhr P., Eliez S., Michel C.M. (2018), From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging, in Developmental Cognitive Neuroscience, 31, 58-66.
Electrophysiological Evidence for the Development of a Self-Sustained Large-Scale Epileptic Network in the Kainate Mouse Model of Temporal Lobe Epilepsy
Sheybani Laurent, Birot Gwenaël, Contestabile Alessandro, Seeck Margitta, Kiss Jozsef Zoltan, Schaller Karl, Michel Christoph M., Quairiaux Charles (2018), Electrophysiological Evidence for the Development of a Self-Sustained Large-Scale Epileptic Network in the Kainate Mouse Model of Temporal Lobe Epilepsy, in The Journal of Neuroscience, 38(15), 3776-3791.
Early alterations of social brain networks in young children with autism
Sperdin Holger Franz, Coito Ana, Kojovic Nada, Rihs Tonia Anahi, Jan Reem Kais, Franchini Martina, Plomp Gijs, Vulliemoz Serge, Eliez Stephan, Michel Christoph Martin, Schaer Marie (2018), Early alterations of social brain networks in young children with autism, in eLife, 7, e31670.
Visual processing deficits in 22q11.2 Deletion Syndrome
Biria Marjan, Tomescu Miralena I., Custo Anna, Cantonas Lucia M., Song Kun-Wei, Schneider Maude, Murray Micah M., Eliez Stephan, Michel Christoph M., Rihs Tonia A. (2018), Visual processing deficits in 22q11.2 Deletion Syndrome, in NeuroImage: Clinical, 17, 976-986.
Electrical Neuroimaging of Music Processing Reveals Mid-Latency Changes with Level of Musical Expertise.
James Clara, Oechslin Matthias, Michel Christoph M, De Pretto M. (2017), Electrical Neuroimaging of Music Processing Reveals Mid-Latency Changes with Level of Musical Expertise., in Frontiers Neuroscience, 11, 613.
Face and gaze perception in borderline personality disorder: An electrical neuroimaging study
Berchio Cristina, Piguet Camille, Gentsch Kornelia, Küng Anne-Lise, Rihs Tonia A., Hasler Roland, Aubry Jean-Michel, Dayer Alexandre, Michel Christoph M., Perroud Nader (2017), Face and gaze perception in borderline personality disorder: An electrical neuroimaging study, in Psychiatry Research: Neuroimaging, 269, 62-72.
Electroencephalographic Resting-State Networks: Source Localization of Microstates
Custo Anna, Van de Ville Dimitri, Wells WM, Brunet Denis, Michel Christoph M (2017), Electroencephalographic Resting-State Networks: Source Localization of Microstates, in Brain Connectivity, 10, 671-682.
Dysfunctional gaze processing in bipolar disorder
Berchio Cristina, Piguet Camille, Michel Christoph M., Cordera Paolo, Rihs Tonia A., Dayer Alexandre G., Aubry Jean-Michel (2017), Dysfunctional gaze processing in bipolar disorder, in NeuroImage: Clinical, 16, 545-556.
Early averted gaze processing in the right Fusiform Gyrus: An EEG source imaging study.
Berchio Cristina, Rihs Tonia, Piguet Camille, Dayer Alexandre, Aubry Jean-Michel, Michel Christoph M. (2016), Early averted gaze processing in the right Fusiform Gyrus: An EEG source imaging study., in Biological Psychology, 119, 156-170.
Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis
Gschwind Markus, Hardmeier Martin, Van De Ville Dimitri, Tomescu Miralena I., Penner Iris-Katharina, Naegelin Yvonne, Fuhr Peter, Michel Christoph M., Seeck Margitta (2016), Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis, in NeuroImage: Clinical, 12, 466-477.

Collaboration

Group / person Country
Types of collaboration
Prof. Jean-Michel Aubry, University Hospital Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Petra Hüppi, University Hospital of Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Veerle Visser-Vandewalle, Cologne Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Stephan Eliez & Dr. Marie Schear, University Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Ivan Rektor, Neurology Clinic, Brno Czech Republic (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Peter Fuhr, Neurology Clinic, University Hospital Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Margitta Seeck, Epilepsy Unit, University Hospital Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. John Terry & Prof. Peter Ashwin, College of Engineering, University of Exeter Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. Pierre Pollak, Neurology Clinic Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Communication with the public

Communication Title Media Place Year
Media relations: print media, online media A gentle method for unlocking the mysteries of the deep brain EurekAlert International 2019
Media relations: print media, online media Forscher gewinnen Einblick ins Gehirn von ausserhalb des Schädels NZZ German-speaking Switzerland 2019
Media relations: print media, online media Une méthode douce pour percer les mystères du cerveau profond UNIGE Western Switzerland 2019

Associated projects

Number Title Start Funding scheme
184677 Capturing thoughts: the neural correlates of spontaneous mentation 01.05.2019 Project funding (Div. I-III)
140334 From Cortex to Classroom: Enhancing Brain Development for Premature Infants 01.10.2012 SPUM
140332 Imaging large scale neuronal networks in epilepsy 01.05.2012 SPUM
124115 Improved prediction and monitoring of CNS disorders with advanced neurophysiological and genetic assessment 01.04.2009 SPUM
132952 The Idling Brain: The Temporal Structure of Resting State Networks Revealed by Electrical Neuroimaging 01.11.2010 Project funding (Div. I-III)
125759 NCCR SYNAPSY: The synaptic bases of mental diseases (phase I) 01.10.2010 National Centres of Competence in Research (NCCRs)
170873 Exploring brain communication pathways by combining diffusion based quantitative structural connectivity and EEG source imaging : application to physiological and epileptic networks 01.03.2017 Sinergia

Abstract

Recent research on brain functions using whole-brain imaging methods have led to important paradigm shifts in the understanding of higher cognitive functions and their disturbances in different brain pathologies. The first paradigm shift was from the idea that brain functions are localized in hierarchically distinct areas and the information is processed in a feed-forward stream, to the concept of distributed networks and massive parallel processing in different brain areas collectively serving the same function. The second paradigm shift was a radical change in the interpretation of the brain state during rest: rather than considering the brain inactive and simply reacting to incoming stimuli, the prevailing hypothesis now is that the brain is inherently active in an organized way at rest to be optimally prepared for stimulus processing.This new view of how the brain processes information led to a vast amount of studies that looked at large-scale brain networks at rest: their spatial organization, temporal dynamics, influence on information processing, and changes in different mental diseases. Different methods are used to reveal these networks, leading to different interpretations about their spatial and temporal organization. On the one hand, brain networks are studied with functional magnetic resonance imaging (fMRI) that shows correlated BOLD fluctuations in different brain areas. On the other hand they are studied with Magneto- or Electroencephalography (M/EEG) that show correlated amplitude fluctuations of oscillations in different brain areas or time-varying changes of the topographies of the global electromagnetic field. It has been proposed that the resting state networks (RSN) measured with fMRI (rsfMRI) reflect a sort of “constant inner state of exploration” to make the system optimally prepared for a given impending input and thus influencing perception and cognitive processing. While this idea intuitively makes sense, the fluctuations seen with the rsfMRI are too slow to prepare for a given unpredictable input and to allow a fast and adequate reaction. In order to mediate complex mental activities and optimally respond to the rapidly changing information input, the networks have to reorganize in different spatial patterns on a sub-second time scale. M/EEG can record fluctuations on this time scale and are thus better suited to study the fast dynamics of resting states and their influence on stimulus processing. In this project we propose to characterize the spatial and temporal properties of resting-state networks recorded with high-density EEG, combined EEG-fMRI, and combined intracranial and scalp EEG. We propose several new analysis methods and will apply them on a large number of experimental and clinical data that have been collected in our laboratory during previous years, including data from patients with epilepsy, multiple sclerosis (MS), schizophrenia, autism, bipolar disorder, as well as patients in coma and under anaesthesia. Moreover, collaboration with groups specialized in recordings from deep brain regions will allow us to investigate the role of subcortical structures in resting-state networks and to look at alteration of network dynamics in different disease states (Parkinson’s, Tourette, OCD, drug addiction, epilepsy).We belief that this project will provide a better understanding of the mechanisms that lead to the behavioral and cognitive disturbances in different pathologies at the system level, helping to develop better strategies for rehabilitation and treatment.
-