Projekt

Zurück zur Übersicht

Temporal dynamics of whole-brain neuronal networks

Titel Englisch Temporal dynamics of whole-brain neuronal networks
Gesuchsteller/in Michel Christoph
Nummer 159705
Förderungsinstrument Projektförderung (Abt. I-III)
Forschungseinrichtung Département des neurosciences fondamentales Faculté de Médecine Université de Genève
Hochschule Universität Genf - GE
Hauptdisziplin Neurophysiologie und Hirnforschung
Beginn/Ende 01.05.2015 - 30.04.2019
Bewilligter Betrag 474'000.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Neurophysiologie und Hirnforschung
Andere Gebiete der Ingenieurwissenschaften

Keywords (3)

Electrophysiology; Brain Imaging; Resting states

Lay Summary (Deutsch)

Lead
Zeitliche Dynamik funktioneller Netzwerke im menschlichen Gehirn in Ruhe
Lay summary

Durch modern bildgebende Verfahren hat die funktionelle Hirnforschung am Menschen in den letzten Jahren zwei fundamentale Paradigmenwechsel erlebt, was das Verständnis höherer kognitiver Funktionen und ihre pathologischen Veränderungen betrifft. Zum einen wurde erkannt, dass Hirnfunktionen nicht bestimmten Hirnarealen zugeordnet werden kann, sondern vielmehr aus dem Zusammenspiel von verschiedenen Hirnarealen besteht, die in funktionellen Netzwerken verbunden sind. Zum anderen fand ein radikaler Wechsel statt was den Zustand des Gehirns in Ruhe betrifft: es wurde erkannt dass das Gehirn in Ruhe nicht inaktiv ist und passiv auf Information wartet, sondern dass es im Gegenteil in organisierter Weise aktiv ist um sich optimal auf ankommende Reize vorzubereiten.

Unser Projekt wird versuchen die zeitlich-räumliche Struktur dieser Ruhe-Netzwerke und ihre Störungen besser zu verstehen. Wir benutzen hochauflösende Elektroenzephalographie (EEG)  kombiniert mit funktioneller Magnetresonanztomographie (fMRI) und kombiniert mit direkten elektrophysiologischen Ableitungen im Gehirn. In Zusammenarbeit mit einer Grupee von Mathematikern in Exeter (GB) schlagen wir verschiedene neue Methoden vor um diese Netzwerke in Zeit und Raum zu charakterisieren. Wir werden eine grosse Anzahl schon registrierter Daten mit diesen neuen Methoden analysieren, Daten von gesunden Versuchspersonen aber auch von Patienten mit Epilepsie, Multipler Sklerose, Autismus, Depression, Schizophrenie und Patienten in Koma und unter Anästhesie.  Zusätzlich werden wir in Zusammenarbeit mit der Gruppe für Stereotaxie und funktionelle Neurochirurgie der Universitätsklinik Köln Patienten mit implantierten Elektroden in tiefen Hirnstrukturen ableiten und Störungen der Netzwerke in Patienten mit Parkinson, Tourette Syndrom, Zwangsstörungen, und Drogenabhängigkeit untersuchen.

 

 

 

Direktlink auf Lay Summary Letzte Aktualisierung: 13.04.2015

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Projektpartner

Publikationen

Publikation
Face and gaze perception in borderline personality disorder: An electrical neuroimaging study
Berchio Cristina, Piguet Camille, Gentsch Kornelia, Küng Anne-Lise, Rihs Tonia A., Hasler Roland, Aubry Jean-Michel, Dayer Alexandre, Michel Christoph M., Perroud Nader (2017), Face and gaze perception in borderline personality disorder: An electrical neuroimaging study, in Psychiatry Research: Neuroimaging, 269, 62-72.
Dysfunctional gaze processing in bipolar disorder
Berchio Cristina, Piguet Camille, Michel Christoph M., Cordera Paolo, Rihs Tonia A., Dayer Alexandre G., Aubry Jean-Michel (2017), Dysfunctional gaze processing in bipolar disorder, in NeuroImage: Clinical, 16, 545-556.
Early averted gaze processing in the right Fusiform Gyrus: An EEG source imaging study.
Berchio Cristina, Rihs Tonia, Piguet Camille, Dayer Alexandre, Aubry Jean-Michel, Michel Christoph M. (2016), Early averted gaze processing in the right Fusiform Gyrus: An EEG source imaging study., in Biological Psychology, 119, 156-170.
Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis
Gschwind Markus, Hardmeier Martin, Van De Ville Dimitri, Tomescu Miralena I., Penner Iris-Katharina, Naegelin Yvonne, Fuhr Peter, Michel Christoph M., Seeck Margitta (2016), Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis, in NeuroImage: Clinical, 12, 466-477.
EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review
Michel Christoph M., Koenig Thomas, EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review, in Neuroimage.
Electrical Neuroimaging of Music Processing Reveals Mid-Latency Changes with Level of Musical Expertise.
James Clara, Oechslin Matthias, Michel Christoph M, De Pretto M., Electrical Neuroimaging of Music Processing Reveals Mid-Latency Changes with Level of Musical Expertise., in Frontiers Neuroscience, 11(613).
Electroencephalographic Resting-State Networks: Source Localization of Microstates
Custo Anna, Van de Ville Dimitri, Wells WM, Brunet Denis, Michel Christoph M, Electroencephalographic Resting-State Networks: Source Localization of Microstates, in Brain Connectivity.

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
140334 From Cortex to Classroom: Enhancing Brain Development for Premature Infants 01.10.2012 SPUM
140332 Imaging large scale neuronal networks in epilepsy 01.05.2012 SPUM
124115 Improved prediction and monitoring of CNS disorders with advanced neurophysiological and genetic assessment 01.04.2009 SPUM
132952 The Idling Brain: The Temporal Structure of Resting State Networks Revealed by Electrical Neuroimaging 01.11.2010 Projektförderung (Abt. I-III)
125759 NCCR SYNAPSY: The synaptic bases of mental diseases (phase I) 01.10.2010 Nationale Forschungsschwerpunkte (NFS)
170873 Exploring brain communication pathways by combining diffusion based quantitative structural connectivity and EEG source imaging : application to physiological and epileptic networks 01.03.2017 Sinergia

Abstract

Recent research on brain functions using whole-brain imaging methods have led to important paradigm shifts in the understanding of higher cognitive functions and their disturbances in different brain pathologies. The first paradigm shift was from the idea that brain functions are localized in hierarchically distinct areas and the information is processed in a feed-forward stream, to the concept of distributed networks and massive parallel processing in different brain areas collectively serving the same function. The second paradigm shift was a radical change in the interpretation of the brain state during rest: rather than considering the brain inactive and simply reacting to incoming stimuli, the prevailing hypothesis now is that the brain is inherently active in an organized way at rest to be optimally prepared for stimulus processing.This new view of how the brain processes information led to a vast amount of studies that looked at large-scale brain networks at rest: their spatial organization, temporal dynamics, influence on information processing, and changes in different mental diseases. Different methods are used to reveal these networks, leading to different interpretations about their spatial and temporal organization. On the one hand, brain networks are studied with functional magnetic resonance imaging (fMRI) that shows correlated BOLD fluctuations in different brain areas. On the other hand they are studied with Magneto- or Electroencephalography (M/EEG) that show correlated amplitude fluctuations of oscillations in different brain areas or time-varying changes of the topographies of the global electromagnetic field. It has been proposed that the resting state networks (RSN) measured with fMRI (rsfMRI) reflect a sort of “constant inner state of exploration” to make the system optimally prepared for a given impending input and thus influencing perception and cognitive processing. While this idea intuitively makes sense, the fluctuations seen with the rsfMRI are too slow to prepare for a given unpredictable input and to allow a fast and adequate reaction. In order to mediate complex mental activities and optimally respond to the rapidly changing information input, the networks have to reorganize in different spatial patterns on a sub-second time scale. M/EEG can record fluctuations on this time scale and are thus better suited to study the fast dynamics of resting states and their influence on stimulus processing. In this project we propose to characterize the spatial and temporal properties of resting-state networks recorded with high-density EEG, combined EEG-fMRI, and combined intracranial and scalp EEG. We propose several new analysis methods and will apply them on a large number of experimental and clinical data that have been collected in our laboratory during previous years, including data from patients with epilepsy, multiple sclerosis (MS), schizophrenia, autism, bipolar disorder, as well as patients in coma and under anaesthesia. Moreover, collaboration with groups specialized in recordings from deep brain regions will allow us to investigate the role of subcortical structures in resting-state networks and to look at alteration of network dynamics in different disease states (Parkinson’s, Tourette, OCD, drug addiction, epilepsy).We belief that this project will provide a better understanding of the mechanisms that lead to the behavioral and cognitive disturbances in different pathologies at the system level, helping to develop better strategies for rehabilitation and treatment.
-