Zurück zur Übersicht

A microbial revolution: Improving mycorrhizal fungi to increase cassava productivity in Africa

Titel Englisch A microbial revolution: Improving mycorrhizal fungi to increase cassava productivity in Africa
Gesuchsteller/in Sanders Ian
Nummer 159665
Förderungsinstrument Interdisziplinäre Projekte
Forschungseinrichtung Département d'Ecologie et d'Evolution Faculté de Biologie et de Médecine Université de Lausanne
Hochschule Universität Lausanne - LA
Hauptdisziplin Forst- und Agrarwissenschaften
Beginn/Ende 01.04.2016 - 31.03.2019
Bewilligter Betrag 800'854.00
Alle Daten anzeigen

Alle Disziplinen (4)

Forst- und Agrarwissenschaften

Keywords (10)

mycorrhiza; food security; smallholder farmers; green revolution; agronomy; microbes; fungi; agricultural economics; cassava; genetics

Lay Summary (Französisch)

Mycorrhizal fungi have been shown to improve plant growth. In this project, Lausanne University scientists team-up with agronomy researchers in Kenya, Tanzania and Colombia to use mycorrhizal fungi, that have been genetically improved by natural biological processes, to improve the growth of cassava. Cassava is a plant that feeds almost one billion people in many developing countries in the world. Our project could help address problems of hunger and poverty in those countries.
Lay summary

Pendant des millénaires, les agriculteurs ont utilisé la variation génétique naturelle pour sélectionner les meilleures variétés de plantes agricoles. L’utilisation de micro-organismes bénéfiques s’associant avec les plantes agricoles pourrait avoir un impact majeur sur la productivité agricole globale. Cependant, la méthode d’amélioration végétale utilisée en recherche agronomique a été jusque là ignorée par les microbiologistes pour l’amélioration de souches de micro-organismes. Nous venons de démontrer que des souches génétiquement différentes de champignons mycorhiziens peuvent grandement augmenter la productivité du manioc.

En s’associant avec la majorité des plantes agricoles, les champignons mycorhiziens augmentent l’acquisition de phosphate par les plantes, un nutriment limitant la productivité sur sol tropical. Le manioc (Manihot esculenta), une espèce d’importance mondiale, nourrit annuellement près de 1 milliard de personnes dans 105 pays. Le manioc est une espèce de subsistance majeure dans les zones tropicales et subtropicales, surtout en Afrique subsaharienne.

L’hypothèse de ce projet est que la génétique des champignons mycorhiziens à arbuscules (CMA) peut être manipulée naturellement pour augmenter la productivité du manioc en Afrique. Des souches de CMA génétiquement distantes pourraient potentiellement avoir des effets très contrastants sur la croissance du manioc. Par des expériences sur le terrain, nous allons tester ces hypothèses, évaluer leur pertinence agronomique (p. ex. le rendement et l’impact économique) et tester la reproductibilité de nos résultats. 


Direktlink auf Lay Summary Letzte Aktualisierung: 29.01.2016

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
144079 Evolutionary genomics of the mycorrhizal symbiosis 01.10.2012 Projektförderung (Abt. I-III)
131311 Cassava for food security and sustainability in Colombia: Biotechnological application of mycorrhizal fungi 01.08.2011 Forschungspartnerschaften mit Entwicklungsländern
162549 From population genomics to variation in symbiotic effects of mycorrhizal fungi on plants 01.12.2015 Projektförderung (Abt. I-III)


For millennia farmers have been improving crops by using their natural genetic variation and selecting the best varieties. Today we face an unprecedented challenge to feed the growing global human population that can only be achieved with major changes in how we combine science and technology with agronomy. This interdisciplinary research proposal brings together two disciplines that would seem to have already been successfully brought together by plant geneticists and agronomists decades ago. No plants live alone. All plants live with an array of microbes that have a major positive and negative impact on global food production. There has been much interest in using beneficial microbes to increase crop production. With the exception of nitrogen-fixing bacteria (Rhizobium), most have been unsuccessful or extremely limited in their application. The general approach to beneficial microbe use typically involves finding a naturally-occurring beneficial strain of a microbe and trying to use that one strain in a variety of different crops, soils types, climates etc. In other words, microbiologists have completely ignored the principals known to plants breeders of using naturally occurring genetic variation as a base to genetically improve microorganisms or tailor them to a specific crop or environment. In our research on mycorrhizal fungal genetics, it has become apparent to us how microbiologists, plant geneticists and agronomists seem puzzled by the concept of genetically improving microbes to improve plant growth rather than directly genetically improving the plants themselves, even though concepts of genetics are regularly brought together with agronomy. Yet work, in our group has already demonstrated in the field that huge differences in the productivity of the globally important food crop cassava can be achieved by inoculating cassava with genetically different lines of beneficial mycorrhizal fungi that were generated in the lab. The variation in cassava growth we observed is so large that it would be very unlikely in one generation of plant breeding to see similar variation in cassava growth.Mycorrhizal fungi form symbioses with all our major crops. They help plants obtain phosphate from the soil; an essential nutrient that limits cassava production in the tropics. There is a huge fundamental research base focussed on this symbiosis and yet hardly any of the lab-based technology ever leads to real applications. Cassava (Manihot esculenta) is an obvious target for the application mycorrhizal fungi. Cassava is globally important, annually feeding almost a billion people in 105 countries. It is an important crop for subsistence farming throughout tropical and subtropical regions for smallholder farmers, but especially in sub-Saharan Africa. The overriding hypothesis of this project is that genetic improvement of arbuscular mycorrhizal fungi (AMF) by crossing and segregation can be used to increase cassava productivity in Africa. Secondly, we hypothesize that using crossing and segregation between genetically distant AMF will give a large range of different growth responses in cassava and that this can be used to develop the most effective AMF strains, but also the best strains for certain conditions such as drought. We aim to conduct basic experiments to test these hypotheses, followed up by experiments to test the agronomic relevance of our findings (including potential effects on cassava yields as well as economic impacts) and their reproducibility. Lastly, researchers have paid little attention to the origin and place of use of mycorrhizal fungi. It could be environmentally unsound to introduce AMF coming from another place. We propose a combination of population genomics and meta-genomics approaches to assess this risk, using fundamental principals of population genetics and community ecology.