Project

Back to overview

Experimental Device independent Quantum Communication

Applicant Zbinden Hugo
Number 159592
Funding scheme Project funding (Div. I-III)
Research institution GAP-Optique Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Other disciplines of Physics
Start/End 01.07.2015 - 30.06.2018
Approved amount 446'893.00
Show all

Keywords (5)

secure communication; quantum communication; device indepenent; quantum key distribution; quantum random number generator

Lay Summary (German)

Lead
In unserer heutigen Informationsgesellschaft ist vertrauliche und sichere Kommunikation von grösster Wichtigkeit und die Affäre Snowden hat uns einmal mehr in Erinnerung gerufen, dass das Recht auf vertrauliche Kommunikation keine Selbstverständlichkeit ist. Die Quantenphysik präsentiert uns zwei theoretisch perfekte Lösungen zur Datenverschlüsselung: Zufallszahlengeneratoren und die Quantenkryptographie zur Übertragung von kryptographischen Schlüsseln. In der Praxis haben aber auch diese Methoden mögliche Schwächen wenn sie mangelhaft umgesetzt werden Das Ziel dieses Projekts ist es die Gesetze der Quantenphysik so geschickt auszunutzen, dass man die Sicherheit des Systems auch ohne Annahmen über eine fehlerfreie Umsetzung garantieren kann.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Quantenkryptographie und quanten-physikalische Zufallsgeneratoren erlauben theoretisch perfekte kryptographische Schlüssel zu verschicken. Was passiert aber wenn die verkauften Geräte mangelhaft sind oder möglicherweise bewusst Schlupflöcher eingebaut wurden? Interessanterweise kann uns die Quantenphysik auch da weiterhelfen wenn man verschränkte Photon-paare zu den beiden Benutzern sendet. Diese können dann beidseitig Messungen ausüben und aufgrund der Korrelationen der Messresultate bestimmen ob der generierte Schlüssel sicher ist, ohne irgendwelche Annahmen über die Messapparatur machen zu müssen (black-box Szenario). Diese Methode ist hingegen experimentell äussert schwierig, weil sie nur funktioniert wenn fast alle der Photon detektiert werden können. Wir hoffen weltweit eine der ersten Gruppe zu sein, die diese sogenannte "device independent" Quantenkryptographie realisieren kann. Auf dem Weg zu diesem konzeptionell faszinierenden Ziel, werden wir praxisorientierte Methoden entwickeln, bei denen mit minimalen Annahmen über die Geräte (grey-box Szenario), die Sicherheit garantiert werden kann. Die Grundidee dabei ist, dass die Geräte sich automatisch selber testen.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Das Projekt ist ein einerseits interessant für die Erforschung der grundlegenden Eigenschaften der Quantenphysik, andererseits stellt es grosse technische Anforderungen. Für die Gesellschaft ist es relevant, da sichere Kommunikation in unserer Informationsgesellschaft von höchster Bedeutung ist.

 

Direct link to Lay Summary Last update: 22.04.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Heralded amplification of path entangled quantum states
Monteiro F, Verbanis E, Vivoli V Caprara, Martin A, Gisin N, Zbinden H, Thew R T (2017), Heralded amplification of path entangled quantum states, in Quantum Science and Technology, 2(2), 024008-024008.
Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination
Brask Jonatan Bohr, Martin Anthony, Esposito William, Houlmann Raphael, Bowles Joseph, Zbinden Hugo, Brunner Nicolas (2017), Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination, in Physical Review Applied, 7(5), 054018-054018.
Detector-device-independent quantum key distribution: Security analysis and fast implementation
Boaron Alberto, Korzh Boris, Houlmann Raphael, Boso Gianluca, Lim Charles Ci Wen, Martin Anthony, Zbinden Hugo (2016), Detector-device-independent quantum key distribution: Security analysis and fast implementation, in Journal of Applied Physics, 120(6), 063101-063101.
Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection
Guerreiro T., Monteiro F., Martin A., Brask J. B., Vértesi T., Korzh B., Caloz M., Bussières F., Verma V. B., Lita A. E., Mirin R. P., Nam S. W., Marsilli F., Shaw M. D., Gisin N., Brunner N., Zbinden H., Thew R. T. (2016), Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection, in Physical Review Letters, 117(7), 070404-070404.
Resource-Efficient Measurement-Device-Independent Entanglement Witness
Verbanis E., Martin A., Rosset D., Lim C. C. W., Thew R. T., Zbinden H. (2016), Resource-Efficient Measurement-Device-Independent Entanglement Witness, in Physical Review Letters, 116(19), 190501-190501.
Practical measurement-device-independent entanglement quantification
Rosset Denis, Martin Anthony, Verbanis Ephanielle, Lim Charles Ci Wen, Thew Rob, Practical measurement-device-independent entanglement quantification, in Physical Review A.

Collaboration

Group / person Country
Types of collaboration
Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge Nation United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
GAP-quantique/ Uni Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Perimeter Institute for Theoretical Physics Canada (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Departement of Physics, Universität Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Department of Electrical and Computer Engineering, National University of Singapore Singapore (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Jet Propulsion Laboratory, California Institute of Technology United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Department of Physics, National Cheng Kung University Taiwan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
GAP-Quantum Correlations, University of Geneva, Switzerland Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
National Institute of Standards and Technology United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
ETH Zurich/Institut f. Theoretische Physik Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
Institute for Nuclear Research, Hungarian Academy of Sciences Hungary (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Uni Geneva/ Theoretical Physics Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Quantum Information and Measurement QIM V Talk given at a conference Entanglement Based Quantum Networking 04.04.2019 Rome, Italy Thew Robert;
European Quantum Technologies Conference EQTC19 Talk given at a conference Heralded Entanglement in Quantum Communication Networks”, 18.02.2019 Grenoble, France Thew Robert;
CERN Quantum Computing for High Energy Physics workshop Talk given at a conference Quantum Communication Networks 05.11.2018 CERN, Geneva, Switzerland Thew Robert;
WE-Hereaus Seminar: Quantum Networks – from Building Blocks to Applications Talk given at a conference Path Entangled Quantum Networks 05.02.2018 Bad Honnef, Germany, Germany Thew Robert;
WE-Hereaus Seminar: Quantum Networks – from Building Blocks to Applications Poster Path Entangled Quantum Networks 05.02.2018 Bad Honnef, Germany Verbanis Ephanielle;
SPW: Single Photon Workshop 2017 Talk given at a conference Quantum-enabled applications 31.07.2017 Boulder, USA, United States of America Zbinden Hugo;
CIFAR Program in Quantum Information Science Quantum Network Workshop Talk given at a conference The Photonic Side of Quantum Networks 27.06.2017 Calgary, Canada, Canada Thew Robert;
TyQI 2017 Talk given at a conference Self-testing QRNG: A lot of randomness for little trust! 19.06.2017 Paris, France, France Zbinden Hugo;
Quantum 2017 Talk given at a conference High-rate semi-device-independent quantum random number 17.05.2017 Torino, Italy, Italy Zbinden Hugo;
QIM: Quantum Information & Measurement Talk given at a conference Heralded Photon Amplification for Path Entangled Quantum Communication 05.04.2017 Paris, France, France Thew Robert;
QCrypt Poster Detector-Device-Independent QKD: Security Analysis and Fast Implementation, 12.09.2016 Washington, United States of America Boaron Alberto;
Department colloqium, University of Copenhagen Individual talk Heralded Single Photon Entanglement and Quantum Networks 06.07.2016 UNiversity of Copenhagen, Denmark Thew Robert;
QCMC: Quantum Communication, Measurement and Computing Poster Detector-device-independent quantum key distribution 04.07.2016 Singapore, Singapore Martin Anthony;
Trustworthy Quantum Information Workshop Talk given at a conference Demonstration of EPR steering using single-photon path entanglement and displacement-based detection 27.06.2016 Shanghai, China, China Martin Anthony;
QSIT Junior Meeting Talk given at a conference Rapid realization of the Detector-device-independent quantum key distribution 13.06.2016 Passugg, Switzerland, Switzerland Boaron Alberto;
Colloquium, University of Basel, Individual talk Engineering Photonic States & Quantum Networks 02.05.2016 Basel, Switzerland, Switzerland Thew Robert;
BQIT: Bristol Quantum Information Technologies Workshop Talk given at a conference Quantum Communication: Technologies and Ideas 06.04.2016 Bristol, UK, Great Britain and Northern Ireland Thew Robert;
Spectral & Spatial Engineering of Quantum Light Talk given at a conference Heralded Single-Photon Path Entanglement Generation, Measurement, Characterisation 30.03.2016 Warsaw, Poland, Poland Thew Robert;
SIQS Progress Status Workshop Talk given at a conference Self-testing Quantum Random Number Generator … and Other Grey Box Games 14.03.2016 Venice, Italy, Italy Thew Robert;
Sixth Colloquium of the GDR IQFA Talk given at a conference Detector-device-independant quantum key distribution 18.11.2015 Palaiseau, France, France Martin Anthony;
QIPC Talk given at a conference Self-testing quantum random number generator 13.09.2015 Leeds, Great Britain and Northern Ireland Zbinden Hugo;
QIPC: Quantum Information Processing and Communication Talk given at a conference Path Entanglement for Quantum Communication 13.09.2015 Leeds, UK, Great Britain and Northern Ireland Thew Robert;
Summer school, SUSSP71: Frontiers in Quantum Dynamics & Quantum Poster Measurement Device Independent Entanglement Witness 21.07.2015 Glasgow, UK, Great Britain and Northern Ireland Verbanis Ephanielle;
SPW: Single Photon Workshop Talk given at a conference Resource-efficient certification of SPDC-generated entangled states 15.07.2015 Geneva, Switzerland, Switzerland Verbanis Ephanielle;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved


Awards

Title Year
Medal for Innovation - University of Geneva 2017
Heinrich-Greinacher Prize 2016

Associated projects

Number Title Start Funding scheme
125723 NCCR QSIT: Quantum Science and Technology (phase I) 01.01.2011 National Centres of Competence in Research (NCCRs)
182664 Experimental Quantum Communication Networks 01.01.2019 Project funding (Div. I-III)
176517 Self-testing Quantum Random Number Generator 01.10.2018 Bridge - Discovery

Abstract

In today’s information society, the right to communication privacy and security is of paramount importance to everyone. Recent revelations of the activities of state-actors like the NSA and GCHQ, in spying on global Internet traffic, once again reminds us how fragile these rights can be. In the never-ending cat and mouse game between encryption and cryptanalysis, information theory changed the rules, proving that perfectly secure encryption and authentication is possible, provided two parties secretly share a perfectly random key. Therefore, when it was shown that secure key exchange based on the laws of quantum physics is possible, the outcome of the game appeared decided. Applications such as quantum random number generation (QRNG) and quantum key distribution (QKD) have made enormous progress in the last 30 years and commercial products are now available and operational around the world. However, despite the fact that many theoretical proofs confirmed the security of the different schemes, it quickly became apparent that the experimental realisations are vulnerable due to different kinds of experimental limitations, as is the case for all cryptography. Quantum physics allows us to counter this challenge by also providing the tools for testing and detecting imperfections in hardware. The idea of Device Independent (DI) quantum cryptography is to design protocols whose security does not rely on any detailed assumptions about the internal working of the devices used in the protocol. Devices are seen as ``black boxes'' getting inputs and producing outputs with no assumptions on how the box generates the output, providing it does not violate the laws of quantum physics. This project aims to converge on solutions that bridge the gap between abstract security proofs and the security of real world systems and lay the foundations for improved security for practical quantum communication applications. This will be addressed by: 1)Developing practical implementations of systems that exploit Device Independent concepts for the generation of private and secure randomness for QRNG and its distribution via QKD.2) Improving the efficiency and precision of the components and systems to better characterise potentially imperfect devices such that their limitations can be more reliably taken into account when extracting private and secure keys. Develop novel architectures and protocols that are robust to testable attacks.Both of these approaches rely on precise control and characterisation of quantum systems ranging from single photon sources and detectors to the measurement apparatuses. Device independent schemes provide the most elegant approach, but places extremely challenging limits on system performance and is hard to achieve in practice. However, simpler schemes exist and more are emerging, which can also relax the assumptions on parts of the system. We will be constantly assessing the progress, within the new and exciting field as well as our project, to ensure it successfully achieves its main objectives.
-