Project

Back to overview

Understanding self-regeneration of perovskite-type oxides to prepare active and stable catalysts

Applicant Ferri Davide
Number 159568
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Inorganic Chemistry
Start/End 01.07.2015 - 31.12.2018
Approved amount 197'251.00
Show all

All Disciplines (2)

Discipline
Inorganic Chemistry
Physical Chemistry

Keywords (8)

Nickel; methanation; self-regeneration; perovskite-type oxides; CO2; carbon deposition; spectroscopy; diffraction

Lay Summary (German)

Lead
Viele industrielle katalytische Prozesse leiden unter der Desaktivierung des verwendeten Katalysators. Die Stabilität der Katalysatoren unter reaktionsrelevanten Bedingungen ist deshalb von grosser Wichtigkeit in der modernen Katalysatorforschung. Katalysator Desaktivierung wird z.B. durch Partikelwachstum bei erhöhten Temperaturen, Kohlenstoff Ablagerungen und/oder Vergiftung durch Schwefelspezies verursacht. Das Ziel dieses Projekts ist das Verständnis der sogenannten selbst-regenerierenden Eigenschaft von perovskitartigen Metalloxiden auszubauen und es schliesslich zur Entwicklung von stabilen resp. regenerierbaren Katalysatoren nutzen.
Lay summary

Sogenannte perovskitartige Metalloxide sind in der Lage unter reduktiven Bedingungen Metallatome aus ihrer Kristallstruktur zu segregieren und sie unter oxidativen Bedingungen wieder in die Struktur einzubauen. Diese Eigenschaft und allgemeiner die Kinetik der Reduktion resp. Oxidation ist stark abhängig von verschiedenen Faktoren. In unserem Fall sind wir sehr daran interessiert die Segregation von katalytisch aktivem Nickel zu untersuchen. Insbesondere die Abhängigkeit dieser Eigenschaft von Parameter wie Nickelgehalt im Material und Reaktionstemperatur ist von grossem Interesse. Der Anteil an segregiertem Metall kann mit verschiedenen Methoden verfolgt werden z.B. Röntgendiffraktion (XRD) und Röntgenabsorptionsspektroskopie (XAS). Ein Hauptanliegen ist dabei das Beantworten der Frage, wieviel segregiertes Nickel nimmt nach der Reoxidation wieder die ursprüngliche, oktaedrische Koordination ein. Redox Zyklen bei Reaktionsrelevanten Temperaturen werden erste Informationen über die Möglichkeiten der Selbstregeneration liefern. In einem nächsten Schritt wird der Katalysator unter Reaktionsbedingungen „verbraucht“ wobei zusätzliche Zugabe von Kohlenwasserstoffen eine Beschleunigung der Kohlenstoffablage (sogenanntes Coking) bewirkt. Durch Reoxidation bei den vorher bestimmten Temperaturen wird der Katalysator regeneriert und die Aktivität sollte wieder derjenigen des „unverbrauchten“ Ausgangskatalysators entsprechen.

Direct link to Lay Summary Last update: 05.06.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Fluorescence-detected quick-scanning X-ray absorption spectroscopy
Clark Adam H., Steiger Patrick, Bornmann Benjamin, Hitz Stephan, Frahm Ronald, Ferri Davide, Nachtegaal Maarten (2020), Fluorescence-detected quick-scanning X-ray absorption spectroscopy, in Journal of Synchrotron Radiation, 27(3), 1.
Increased nickel exsolution from LaFe0.8Ni0.2O3 perovskite-derived CO2 methanation catalysts through strontium doping
Steiger Patrick, Kröcher Oliver, Ferri Davide (2020), Increased nickel exsolution from LaFe0.8Ni0.2O3 perovskite-derived CO2 methanation catalysts through strontium doping, in Applied Catalysis A: General, 590, 117328.
Energy Conversion Processes with Perovskite-type Materials
Ferri Davide, Pergolesi Daniele, Fabbri Emiliana (2019), Energy Conversion Processes with Perovskite-type Materials, in CHIMIA International Journal for Chemistry, 73(11), 913-921.
Segregation of Nickel/Iron Bimetallic Particles from Lanthanum Doped Strontium Titanates to Improve Sulfur Stability of Solid Oxide Fuel Cell Anodes
Steiger Patrick, Burnat Dariusz, Kröcher Oliver, Heel Andre, Ferri Davide (2019), Segregation of Nickel/Iron Bimetallic Particles from Lanthanum Doped Strontium Titanates to Improve Sulfur Stability of Solid Oxide Fuel Cell Anodes, in Catalysts, 9(4), 332-332.
Nickel incorporation in perovskite-type metal oxides – Implications on reducibility
Steiger Patrick, Alxneit Ivo, Ferri Davide (2019), Nickel incorporation in perovskite-type metal oxides – Implications on reducibility, in Acta Materialia, 164, 568-576.
Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel
Steiger Patrick, Burnat Dariusz, Madi Hossein, Mai Andreas, Holzer Lorenz, Van Herle Jan, Kröcher Oliver, Heel Andre, Ferri Davide (2019), Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel, in Chemistry of Materials, 31(3), 748-758.
Structural Reversibility of LaCo1-xCuxO3 Followed by In Situ X-ray Diffraction and Absorption Spectroscopy
Pereñíguez Rosa, Ferri Davide (2018), Structural Reversibility of LaCo1-xCuxO3 Followed by In Situ X-ray Diffraction and Absorption Spectroscopy, in ChemPhysChem, 19(15), 1876-1885.
Reversible segregation of Ni in LaFe0.8Ni0.2O3±δ during coke removal
Steiger Patrick, Nachtegaal Maarten, Kröcher Oliver, Ferri Davide (2018), Reversible segregation of Ni in LaFe0.8Ni0.2O3±δ during coke removal, in ChemCatChem, 10, 4456.
Preferential oxidation of CO on a La-Co-Ru perovskite-type oxide catalyst
Pereniguez Rosa, Caballero Alfonso, Ferri Davide (2017), Preferential oxidation of CO on a La-Co-Ru perovskite-type oxide catalyst, in Catalysis Communications, 92, 75.
Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts
Steiger Patrick, Delmelle Renaud, Foppiano Debora, Holzer Lorenz, Heel Andre, Nachtegaal Maarten, Kröcher Oliver, Ferri Davide (2017), Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts, in ChemSusChem, 10, 2505.

Collaboration

Group / person Country
Types of collaboration
ZHAW ICP Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Power-to-X: Review & Analysis of demonstration projects Talk given at a conference From fundamentals to industry - PtG Activities in CH: Innovative materials for CO & CO2 utilization 20.11.2018 Aix-en-Provence, France Heel Andre;
256th ACS Fall Meeting Talk given at a conference Recovery from carbon deposition - La-Fe-Ni-O CO2 hydrogenation catalysts exploiting the reversible segregation of Ni 19.08.2018 Boston, United States of America Ferri Davide; Steiger Patrick;
2018 MRS Spring Meeting Talk given at a conference Microstructural self-regeneration of LaSrTiNiO3-δ: fast recovery from sulfur poisoning 02.04.2018 Phoenix, United States of America Heel Andre; Steiger Patrick; Ferri Davide;
Europacat 13th European Congress on Catalysis Talk given at a conference Recovery from carbon deposition - Stable La-Fe-Ni CO2 hydrogenation catalysts exploiting the reversible segregation of Ni 27.08.2017 Florence, Italy Ferri Davide; Steiger Patrick;
Fall Meeting SCS Poster Exploiting the reversible segregation of Ni in redox stable La-Fe-Ni catalysts 15.09.2016 Zurich, Switzerland Ferri Davide; Steiger Patrick;
Zing Conference on Carbon Dioxide Catalysis Talk given at a conference Towards Stable CO2 Hydrogenation La-Fe-Ni Catalysts – Exploiting the Reversible Segregation of Ni 19.04.2016 Albufeira, Portugal Ferri Davide; Steiger Patrick;
Fall Meeting SCS Poster Exploring the self-regenerating function of perovskite-type oxides on catalytically active nickel 04.09.2015 Lausanne, Switzerland Steiger Patrick; Ferri Davide;


Communication with the public

Communication Title Media Place Year
New media (web, blogs, podcasts, news feeds etc.) Structural reversibility and Ni particle stability in La-Fe-Ni perovskite-type catalysts Advances in Engineering International 2018

Associated projects

Number Title Start Funding scheme
154047 Smart materials concept for SOFC anodes: Self-regenerating catalysts for efficient energy production from renewable fuels 01.10.2014 NRP 70 Energy Turnaround

Abstract

Catalyst deactivation is a key issue in catalyst development. Numerous catalytic processes are limited by deactivation due for example to growth and/or loss of the active metal phase as well as poisoning due to carbon formation or deposition of elements, e.g. sulfur or phosphorous. The principal aim of the project is to understand and apply the self-regenerating function of perovskite-type oxides in order to counteract catalyst deactivation due to microstructural changes of the active phase particles and simultaneous carbon deposition (coking).Perovskite-type oxides are able to segregate metal atoms out of their crystal structure under reducing conditions and to reversibly introduce them into the structure under oxidizing conditions. The major implication of this function is the preservation of the metal particle size from particle growth upon exposure to high operation temperature and reducing environment that is encountered in various catalytic processes. The utility of this function has not been demonstrated for applications other than environmental catalysis. In this project, we aim at demonstrating that this function can be exploited in a similar way to produce active and stable catalysts based on Ni, which is common in a number of applications. The approach is based on the synthesis of a perovskite-type phase in which the active metal only partially substitutes the B-site cation, is homogeneously dispersed and adopts the octahedral coordination environment. Under pre-reduction, or alternately under the reducing conditions imposed by net reducing reaction conditions, the active metal is forced to segregate and to form metal nanoparticles. After oxidation at the same or higher temperature, the active metal phase is protected by re-incorporation into the perovskite-type structure until the next reduction step is applied. CO2 hydrogenation is selected as the probe reaction, since it is a catalytic process under net reducing conditions and moderate but elevated temperatures. Ni is the typical active metal in the form of nanoparticles, which undergoes deactivation due to particle growth and/or coking. Coking is substantially accelerated by the presence of hydrocarbons in the reactants feed.We will try to demonstrate that this function can have a broader range of applicability in catalytic processes, especially at low temperature.
-