Project

Back to overview

Classical and Quantum Simulation of Quantum Many Body Systems

English title Classical and Quantum Simulation of Quantum Many Body Systems
Applicant Troyer Matthias
Number 159411
Funding scheme Project funding (Div. I-III)
Research institution Institut für Theoretische Physik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Theoretical Physics
Start/End 01.04.2015 - 31.03.2018
Approved amount 676'412.00
Show all

All Disciplines (2)

Discipline
Theoretical Physics
Other disciplines of Physics

Keywords (8)

condensed matter physics; quantum annealing; quantum algorithms; density matrix renormalization group; quantum Monte Carlo; simulations of quantum systems; computational physics; statistical physics

Lay Summary (German)

Lead
Mit Fortschritten in der Entwicklung von Quantenhardware zur Lösung von rechnerischen Problemen wird es interessant sich damit herauszustellen was man mit Quantenrechnern machen kann. Dies wollen wir in diesem Projekt erforschen.
Lay summary

In diesem Projekt beschäftigen wir uns mit der Lösung von quantenmechanischen Problemen sowohl auf klassischen Computern als auch auf zukünftigen Quantencomputern. Auf klassischen Computern entwickeln wir neue effiziente Simulationsalgorithmen für Quantensysteme. Indem man "unscharf" aus der Ferne hinsieht kann man zunächst schnell eine gute Näherung finden die sich danach verbessern lässt.

 In der Zukunft werden wir Quantensystems und klassischen Rechnungen vermehrt auf Quantenhardware machen. Dazu haben wir zwei Projekte. In einem ersten erforschen wir das Potential von Quantenoptimierern und insbesondere wie man einen besseren Quantenoptimierter als die Geräte der kanadischen Firma D-Wave herstellen könnte. Daneben versuchen wir die Frage zu beantworten welche Probleme wir mit einem zukünftigen Quantencomputer lösen könnten.


Direct link to Lay Summary Last update: 27.03.2015

Responsible applicant and co-applicants

Employees

Publications

Collaboration

Group / person Country
Types of collaboration
Prof. A.J. Millis, Columbia University United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Daniel Lidar, University of Southern California United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. M. Sigrist, ETH Zurich Switzerland (Europe)
- Publication
Prof. Nicola Spaldin, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Microsoft Station Q, Microsoft Corporation United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
- Industry/business/other use-inspired collaboration
Profs. N. Prokof'ev andf B. Svistunov, University of Massachusetts Amherst United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. Thierry Giamarchi, Univ. de Geneve Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. Nicola Marzari, EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. John Martinis, Google and UCSB United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Use-inspired outputs

Software

Name Year
Project! 2016

Start-ups

Name Year
Mindi 2015

Associated projects

Number Title Start Funding scheme
140224 Simulation of Correlated Quantum Many Body Systems 01.04.2012 Project funding (Div. I-III)
141828 NCCR MARVEL: Materials’ Revolution: Computational Design and Discovery of Novel Materials (phase I) 01.05.2014 National Centres of Competence in Research (NCCRs)

Abstract

This project is about simulations of quantum many body systems, both on classical and quantum hardware, covering three different aspects: the development of improved algorithms for the simulation of strongly correlated quantum many body problems, the exploration of the potential of quantum annealing to solve hard optimization problems, and the development of new quantum algorithms for strongly correlated quantum problems. On the first topic we will develop a new multi-grid version of the density matrix renormalization group algorithm that will substantially improve convergence properties especially in weakly doped systems. Combined with a new high performance massively parallel implementation of DMRG, we will apply this algorithm to simulations of the Hubbard model on wide ladders.The second topic concerns quantum annealing, which uses quantum devices, or simulations of them (in a classical method called simulated quantum annealing) to solve hard combinatorial optimization problems. This area of research has recently gained widespread controversial attention through the devices of the Canadian company D-Wave Systems. Based on our experiences with these devices we see a need to revisit prior results on the advantages of quantum annealing, systematically explore the powers of quantum annealing, and estimate the potentials of this technology for solving real-world application problems.Finally, we will address the question of how a future quantum computer may be used to solve interesting and important problems, especially in the area of strongly correlated materials. While already Feynman has argued that a quantum computer can efficiently simulate quantum models, we have recently seen that even on quantum computers, despite polynomial scaling the brute-force simulation of molecules or materials is still infeasible. New algorithms and hybrid classical/quantum approaches to address this need will be developed in this project.
-