Project

Back to overview

Quantum coherent and soft matter systems

English title Quantum coherent and soft matter systems
Applicant Blatter Johann W.
Number 159238
Funding scheme Project funding (Div. I-III)
Research institution Institut für Theoretische Physik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Theoretical Physics
Start/End 01.05.2015 - 30.04.2018
Approved amount 663'474.00
Show all

All Disciplines (2)

Discipline
Theoretical Physics
Condensed Matter Physics

Keywords (14)

mesoscopic physics; transport; entanglement; quantum electron optics; quantum metrology; superconductors; vortex matter; Josephson junction devices; disordered systems; photons in non-linear media; strongly correlated photons; competing orders; commensurate-incommensurate transition; solitons

Lay Summary (German)

Lead
Das gemeinsame Interesse im Quantenengineering hat die Gebiete der Festkörperphysik, der photonischen Quantenoptik und der Atom Optik zusammengeführt und gegenseitig befruchtet. In diesem Rahmen untersuchen wir das Potential der Elektron-Quantenoptik in elektronischen Bauelementen und erarbeiten neue Konzepte in der Quantenmetrologie. Wir erforschen Nicht-gleichgewichtsphasen und Transporteigenschaften von photonischen Materialien und studieren konkurrierende Strukturen in kalten molekularen Gasen und in weicher Materie. Unsere Arbeiten zur Vortexmaterie soll helfen die technologische Anwendbarkeit von Supraleitern besser zu verstehen.
Lay summary

Über viele Jahrzehnte hat die Quantenmechanik das Fundament zum Verständnis der Festkörperphysik definiert, sei es im Kontext moderner Materialien oder in der Entwicklung mesoskopischer Bauelemente. In der nahen Vergangenheit hat die Bedeutung der Quantenmechanik für die Festkörperphysik nochmals qualitativ zugenommen: im Quantenengineering moderner Materialien und neuartiger Bauelemente nutzen wir Quantenressourcen, Kohärenz, die Superposition von Zuständen, und die Verschränkung, in einer Art und Weise wie es bis anhin nur die Quantenoptiker nutzen konnten. Im Weiteren bereichern die Kernthemen der Festkörperphysik, die Vielteilchenphysik und starke Wechselwirkungen, das Forschungsgebiet. Umgekehrt werden heute Ideen und Konzepte der Festkörperphysik in der Quantenphotonik und im Gebiet der kalten Atome genutzt, womit die drei einstmals separaten Forschungsgebiete zusammengewachsen sind. Wenn heute beispielhaft die Festkörperphysiker versuchen Elektronen in Bauelementen zu verschränken, so arbeiten Forscher mit kalten Atomen daran moderne Materialien wie Graphen oder topologische Isolatoren zu emulieren. Es ist dieses Umfeld welches den Rahmen für unser Forschungsprogramm definiert: im Gebiet der Elektron-Quantenoptik importieren wir Ideen der traditionellen Quantenoptik in die mesoskopische Physik der kohärenten Bauelemente. Mit Hilfe photonischer Systeme, nicht-lineare optische Kavitäten und Fasern, untersuchen wir neue Nicht-gleichgewichtsphasen inspiriert durch ähnliche Phasen in der kondensierten Materie. Im Gebiet der kalten Atome und Moleküle nutzen wir deren enorme Abstimmbarkeit um Neues über konkurrierende Strukturen zu lernen. Das Studium der Vortexmaterie in Supraleitern soll uns helfen deren technologische Anwendbarkeit besser zu verstehen.

 

Direct link to Lay Summary Last update: 12.04.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Entropy Dynamics in the System of Interacting Qubits
N.S. Kirsanov A.V. Lebedev M.V. Suslov V.M. Vinokur G. Blatter and G.B. Lesovik (2018), Entropy Dynamics in the System of Interacting Qubits, in Journal of Russian Laser Research, 39, 101.
Quantum metrology with a transmon qutrit
A.R. Shlyakhov V.V. Zemlyanov M.V. Suslov A.V. Lebedev G.S. Paraoanu G.B. Lesovik G. Blatter (2018), Quantum metrology with a transmon qutrit, in Physical Review A, 97, 022115.
Analysis of a parametrically driven exchange-type gate and a two-photon excitation gate between superconducting qubits
Marco Roth Marc Ganzhorn Nikolaj Moll Stefan Filipp Gian Salis and Sebastian Schmidt (2017), Analysis of a parametrically driven exchange-type gate and a two-photon excitation gate between superconducting qubits, in Physical Review A, 96, 062323.
Long-range spin-coherence in a strongly-coupled all-electronic dot-cavity system
M.S. Ferguson D. Oehri C. Rössler T. Ihn K. Ensslin G. Blatter O. Zilberberg (2017), Long-range spin-coherence in a strongly-coupled all-electronic dot-cavity system, in Physical Review B, 96, 235431.
Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice
M. Biondi G. Blatter H. E. Türeci S. Schmidt (2017), Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice, in Physical Review A, 96, 043809.
Phase Diagram and Excitations of the Jaynes-Cummings-Hubbard Model
S. Schmidt and G. Blatter (2017), Phase Diagram and Excitations of the Jaynes-Cummings-Hubbard Model, Springer, Cham.
Spatial correlations in driven-dissipative photonic lattices
Matteo Biondi Saskia Lienhard Gianni Blatter Hakan E. Tureci Sebastian Schmidt (2017), Spatial correlations in driven-dissipative photonic lattices, in New Journal of Physics, 19, 125016.
Vortex dynamics in type II superconductors under strong pinning conditions
A.U. Thomann V.B. Geshkenbein G. Blatter (2017), Vortex dynamics in type II superconductors under strong pinning conditions, in Physical Review B, 96, 144516.
Time correlators from deferred measurements
D. Oehri A.V. Lebedev G.B. Lesovik and G. Blatter (2016), Time correlators from deferred measurements, in Physical Review B, 93, 045308.
Bosonic Condensation and Disorder-Induced Localization in a Flat Band
F. Baboux L. Ge T. Jacqmin M. Biondi E. Galopin A. Lemaître L. Le Gratiet I. Sagnes, S. Schmidt H.E. Türeci A. Amo and J. Bloch (2016), Bosonic Condensation and Disorder-Induced Localization in a Flat Band, in Physical Review Letters, 116, 066402.
Competing structures in two dimensions: square-to-hexagonal transition
Barbara Gränz Sergey E. Koshunov Vadim B. Geshkenbein Gianni Blatter (2016), Competing structures in two dimensions: square-to-hexagonal transition, in Physical Review B, 94, 054110.
Frustrated polaritons
S. Schmidt (2016), Frustrated polaritons, in Physica Scripta, 91, 073006.
Optimal non-invasive measurement of Full Counting Statistics by a single qubit
A.V. Lebedev G.B. Lesovik G. Blatter (2016), Optimal non-invasive measurement of Full Counting Statistics by a single qubit, in Physical Review B, 93, 115140.
Probing the pinning landscape in type-II superconductors via Campbell penetration depth
R. Willa V. B. Geshkenbein G. Blatter (2016), Probing the pinning landscape in type-II superconductors via Campbell penetration depth, in Physical Review B, 93, 064515.
Trading coherence and entropy by a quantum Maxwell demon
A. V. Lebedev D. Oehri G. B. Lesovik G. Blatter (2016), Trading coherence and entropy by a quantum Maxwell demon, in Physical Review A, 94, 052133.
Campbell penetration in the critical state of type-II superconductors
R. Willa V.B. Geshkenbein and G. Blatter (2015), Campbell penetration in the critical state of type-II superconductors, in Physical Review B, 92, 134501.
Campbell response in type-II superconductors under strong pinning conditions
R. Willa V.B. Geshkenbein R. Prozorov and G. Blatter (2015), Campbell response in type-II superconductors under strong pinning conditions, in Physical Review Letters, 115, 207001.
Incompressible polaritons in a flat band
M. Biondi E.P.L. van Nieuwenburg G. Blatter S.D. Huber and S. Schmidt (2015), Incompressible polaritons in a flat band, in Physical Review Letters, 115, 143601.
Transport Spectroscopy of a Spin-Coherent Dot-Cavity System
C. Rössler D. Oehri O. Zilberberg G. Blatter, M. Karalic J. Pijnenburg A. Hofmann T. Ihn K. Ensslin C. Reichl and W. Wegscheider (2015), Transport Spectroscopy of a Spin-Coherent Dot-Cavity System, in Physical Review Letters, 115, 166603.
Tunable, nonlinear Hong-Ou-Mandel interferometer
D. Oehri M. Pletyukhov V. Gritsev G. Blatter and S. Schmidt (2015), Tunable, nonlinear Hong-Ou-Mandel interferometer, in Physical Review A, 91, 033816.

Collaboration

Group / person Country
Types of collaboration
The Weizmann Institute of Science, Rehovot Israel (Asia)
- in-depth/constructive exchanges on approaches, methods or results
University of Stuttgart Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Landau Institute Moscow Russia (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Awards

Title Year
Abrikosov Prize in Vortex Physics together with M.V. Feigel'man, V.B. Geshkenbein, and V.M. Vinokur, for the development of pioneering concepts describing vortex matter in type II superconductors including theories of collective pinning and dynamics, for their seminal work establishing the theoretical foundations of vortex physics, and for sustained contributions to superconductivity and condensed matter physics. 2017

Associated projects

Number Title Start Funding scheme
140296 Cold atomic-, mesoscopic-, and vortex physics 01.05.2012 Project funding (Div. I-III)
178850 Quantum coherent and soft matter systems 01.05.2018 Project funding (Div. I-III)

Abstract

Our research in condensed matter theory focuses on two modern topics: the quantum coherent systems we study hold the potential for applications in quantum-metrology, -sensing and -information processing. We are interested in electronic mesoscopic systems and atomic ensembles, where the vision is to further develop the fields of electron quantum optics andquantum metrology. Coupled cavity systems with non-linear elements (qubits or atoms) generate interacting polaritons, i.e., mixed photon-matter states, with widely tunable properties that can be engineered to fulfill various tasks. These systems are externally pumped and dissipative and therefore inherently non-equilibrium, opening up a wide field of research opportunities related to quantum many-body- and mesoscopic physics. Our second field of expertise deals with soft matter systems, specifically vortex matter in type II superconductors and soliton arrays, e.g., in cold molecular systems with long-range interactions. Our interest in vortex matter focuses on the development of the theory of strong pinning in disordered systems and its interrelation with the theory of weak collective pinning. Solitonic arrays usually result from competing orders (commensurate-incommensurate transitions) and constitute themselves a new type of matter similar to vortices in superconductors. Given the high tunability and relevance of fluctuations in cold atomic/molecular systems, these define a new implementation of this classic problem that allows for its systematic study.
-