Project

Back to overview

Next-Iso: Next generation compound-specific isotope analysis of stable and radioactive isotopes of organic components in terrestrial ecosystems

English title Next-Iso: Next generation compound-specific isotope analysis of stable and radioactive isotopes of organic components in terrestrial ecosystems
Applicant Schmidt Michael W. I.
Number 157778
Funding scheme R'EQUIP
Research institution Geographisches Institut Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Pedology
Start/End 01.02.2015 - 30.04.2016
Approved amount 400'000.00
Show all

All Disciplines (2)

Discipline
Pedology
Geochemistry

Keywords (5)

compound-specific isotope analysis; stable isotopes; liquid chromatography; radiocarbon; gas chromatography

Lay Summary (German)

Lead
Next-Iso: Next generation compound-specific isotope analysis of stable and radioactive isotopes of organic components in terrestrial ecosystems Next-Iso: Die nächste Generation von Instrumenten zur von stabilen und radioaktiven Isotopen an organischer Komponenten in terrestrischen ÖkosystemenDie Kombination von molekularen und Isotopen-Signalen mit der Analyse von stabilen und radioaktiven Isotopen ist eines der viel versprechendsten neuen Instrumenten in der Boden-Biogeochemie. Ursprünglich aus der Umweltchemie kommend, ermöglicht die komponentenspezifische Isotopenanalytik Einsichten in Prozessverständnis in Pflanzen, Mikroorganismen Boden und Sediment.
Lay summary

Durch den Einsatz dieser neuen Messtechnik wird die Durchführung einiger Projekte überhaupt erst möglich:

1) Dazu gehört die Isotopen-Markierungskammer MICE (Multi Isotope labeling in a Controlled Environment). In diesen Kammern können zukünftige Klimaszenarien (z.B. Sommertrockenheit) simuliert werden und deren Einfluss auf die Pflanzenphysiologie untersucht, und auf den Kohlenstoffkreislauf des Bodens quantifiziert werden.
http://www.geo.uzh.ch/en/units/physische-geographie-boden-biogeographie/research/research-projects/mice

2) Im Nationalen Forschungsprojekt NRP68 "nachhaltige Nutzung von Boden als Resource" werden Kohlenstoff und organische Bodensubstanz mit molekularen Markern und Isotopen untersucht.
http://www.nrp68.ch/E/projects/carbon-and-soil-organic-matter/Pages/default.aspx

3) In dem 2013 begonnen 12-Jahres Projekt "Globaler Wandel und Biodiversität" der Universität Zürich werden die Stabilisierungsmechanismen organischer Bodensubstanz in verschiedene Ökosystemen von den Tropen bis zur Tundra untersucht. 
http://www.gcb.uzh.ch

Direct link to Lay Summary Last update: 19.01.2015

Responsible applicant and co-applicants

Collaboration

Group / person Country
Types of collaboration
Prof. Dr. Michael Schaepman Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Dr. Arno Synal Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Dr. Timothy I. Eglinton / Geology, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Dr. Markus Egli / Geography UZH Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Dr. Samuel Abiven / Geography UZH Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Associated projects

Number Title Start Funding scheme
146473 Effect of drought on C cycling in the plant-soil system - which roles play lignin and lipids? 01.06.2013 Project funding (Div. I-III)
172744 DEEP C 01.10.2017 Project funding (Div. I-III)
188684 IQ-SASS - Improved Quantitative Source Assessment of organic matter in Soils and Sediments using molecular markers and inverse modeling 01.12.2019 Project funding (Div. I-III)
143026 How vulnerable is Swiss soil organic matter to climate and land use changes? 01.06.2013 NRP 68 Sustainable Use of Soil as a Resource
144982 Extending the Multi-Isotopes in a Controlled Environment (MICE) Facility - New climate regulation system and carbon isotope analysers 01.02.2013 R'EQUIP
153631 Root-derived organic matter in the deep subsoil > 2 m depth - what are the consequences for terrestrial carbon cycling and paleoenvironmental records? 01.06.2014 Project funding (Div. I-III)
135233 Organic matter dynamics in the plant-soil system under drought: investigating the importance of roots in the soil carbon stabilization using 13C, 2H, 18O Multi-isotope-labelling technique 01.05.2011 Project funding (Div. I-III)
134452 New tools in reconstructing wildfire history from sedimentary records using organic geochemical methods 01.05.2011 Project funding (Div. I-III)

Abstract

One of the powerful tools to take soil biogeochemical understanding to the next level is the combination of molecular fingerprinting and stable and radioactive isotope analyses. Adapted from environmental chemistry, compound-specific isotope analysis provides deeper insight into cycling of organic matter in plant, microorganism, soil and sediment, which is the key-target of our research group. In the past years, we started using this technique to follow the incorporation and turnover of organic matter in the plant-soil system measuring isotopes of lipids (13C, 14C, 2H), lignin (13C), glycerol dialkyl glycerol tetraethers (13C) and amino acids (13C), and most recently also of fire-markers (13C, 14C of benzene polycarboxylic acids). In-house, however, we only have laser instruments to determine isotopic composition of bulk plant and soil material (13C) and water (2H, 18O). We do not have an isotope ratio mass spectrometer to measure compound-specific isotopes, or other elements, but depend entirely on collaborations. While collaborations often are fruitful, this is not a long-term solution considering that future projects will involve large numbers of samples to analyze time series and to explore spatial heterogeneity in the various terrestrial ecosystems.Furthermore, we want to take advantage of our newly developed capability to separate individual fire markers (benzene polycarboxylic acids BPCA) and to simultaneously determine 13C and 14C, the latter in collaboration with the Biogeosciences group of T. Eglinton at ETH Zurich. Taking advantage of this worldwide unique opportunity would provide us the possibility to take our analytical capabilities to the next level. In early 2014 we published the proof-of-concept (Gierga et al. 2014), and now would apply the novel tool to elucidate the distribution and processes of fire-derived organic matter in terrestrial systems on a global scale.Especially postdocs and PhD students would tremendously benefit from having sophisticated isotope instrumentation in-house. Some of our related projects would benefit significantly from compound-specific isotope analysis. The three most prominent examples for added value are the isotope labeling chamber, MICE (Multi Isotope labeling in a Controlled Environment), the NRP68 project on the “sustainable use of soil as a resource - topic 1: carbon and soil organic matter“, and a major 12 year research program of the University of Zurich on “Global Change and Biodiversity“.
-