Back to overview

Combined Focused Ion Beam (FIB) with Scanning Electron Microscope (SEM) for highly radioactive samples

Applicant Bertsch Johannes
Number 157740
Funding scheme R'EQUIP
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Material Sciences
Start/End 01.11.2015 - 30.06.2017
Approved amount 475'000.00
Show all

All Disciplines (2)

Material Sciences
Other disciplines of Physics

Keywords (6)

radioactive; synchrotron; micro-sized samples; SEM-FIB; hotlab; irradiation damage

Lay Summary (German)

Komponenten und Materialien sind wichtig für die Stabilität, Funktion und Sicherheit nuklearer Einrichtungen wie z. B. Kernreaktoren oder Beschleuniger; nukleare Materialien sind meist stark radioaktiv und werden in Hotlabors untersucht. Materialschäden durch Bestrahlung lassen sich auf mikroskopische Effekte zurückführen. Um die mikroskopischen Effekte besser erschliessen, Proben gezielt an fraglichen Stellen einer hochaktiven Komponente präparieren, und die Radioaktivität durch sehr kleine Proben reduzieren zu können , werden Proben direkt in einem Rasterelektronenmikroskop (SEM), das mit einer Focused Ion Beam (FIB) kombiniert ist, untersucht und in mikroskopische Kleinstproben geschnitten. Die reduzierte Aktivität der Kleinstproben erlaubt dann den Zugang zu Untersuchungen ausserhalb des Hotlabors.
Lay summary


Nach Untersuchung der Kleinstproben in der SEM-FIB erfolgt der Transfer aus dem Hotlabor hin zu weiteren Analysen, z.B. mittels Transmissionselektronenmikroskopie, Synchrotron Strahlung (beides am PSI) oder Atom Probe (ausserhalb des PSI). Das Verhalten von Materialien unter Bestrahlung soll geklärt und optimiert werden, z.B. (i) die Ausbildung der Hochabbrand-Struktur und die Akkumulation von Spaltprodukten in UO2 Pellets, (ii) die Anordnung von Nukliden und Strukturveränderungen in Target-Materialien (z.B. vom CERN), (iii) die mikroskopischen Änderungen in Hüllrohren und in Strukturmaterialien aus Kernreaktoren.

Wissenschaftlicher und gesellschaftlicher Kontext

Die neue SEM-FIB erlaubt ein breites Spektrum ganz neuer Untersuchungen an nuklearen Materialien. Die Installation am PSI profitiert von der international einmaligen Kombination aus Hotlabor, Elektronenmikroskopie-Labor (EMF), der Synchrotron Quelle (SLS) sowie der Verfügbarkeit radioaktiver Proben. Die SEM-FIB wird ebenfalls genutzt zur akademischen Ausbildung neuer Nuklear-Spezialisten – eine dem PSI übertragene nationale Aufgabe.
Direct link to Lay Summary Last update: 22.12.2014

Responsible applicant and co-applicants


Group / person Country
Types of collaboration
University of Manchseter Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Chalmers University/Gothenburg Sweden (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Westinghouse Sweden (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration
swissnuclear Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration
Electric Power Reserach Institute (EPRI) United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration

Associated projects

Number Title Start Funding scheme
140505 Relation entre microstructures et propriétés mécaniques des matériaux pour réacteurs à fusion 01.04.2012 Project funding (Div. I-III)
184695 Investigations of proton-irradiated ferritic alloys using a combination of micro-mechanical testing, electron microscopy and finite element modeling 01.01.2020 Project funding (Div. I-III)


Materials are the limiting factor for the performance, safety and lifetime of all current and future nuclear installations (power reactors, research facilities, spallation, fission and fusion) and nuclear materials science is thus a key discipline in this context. The need of nuclear material expertise and excellence and by consequence academic education of the next generation of nuclear specialists in Switzerland for the next decades is undisputed, not only for the safe operation and decommissioning of the existing Swiss reactors, but also for the operation of nuclear research facilities and accelerators in Switzerland (PSI and CERN) and worldwide (ESS, ITER, IFMIF, JH-MTR, etc.). The preservation of this key expertise and nuclear education are national tasks given to PSI by the Swiss government and the ETH domain. The radiation damage (displacement damage, transmutation, fission products) in nuclear materials results in a change of the structure on an atomic to micro-scale and of macroscopic mechanical, thermal, chemical and physical properties and is still poorly understood, with very limited prediction capabilities for the damage evolution. The correlation of these macroscopic changes with the microscopic processes is the key for a better understanding of the material behavior and for the development of more resistant materials, accurate lifetime predictions or the definition of effective and efficient mitigation measures. The high-resolution characterization of the localized radiation damage in highly radioactive materials is hereby an indispensable key element. Excellent and qualified specimen preparation tools are absolutely crucial for successful investigations in this field. The shielded SEM-FIB is an enabling tool for a broad spectrum of front-edge cut nuclear material research with highly radioactive and contaminated materials with PSI’s unique research infrastructure comprising hot laboratory, synchrotron source SLS, SINQ, Transmission Electron Microscopy (TEM) and potentially SwissFEL and will help to consolidate and further strengthen our scientific excellence and position at the forefront in this field. The use of highly relevant irradiated materials from the Swiss nuclear power plants and STIP/SINQ or MEGAPIE gives PSI opportunities that are worldwide unique. The SEM-FIB will allow the targeted and efficient micro-sample preparation (including nano-slicing) of highly radioactive materials for chemical, structural (down to atomic environment) and mechanical investigations on the spot and significantly extend our characterization possibilities, since the activity will be reduced which brings these samples below the acceptance limits of the different facilities. The potential future applications will pass beyond the range of examples described in this proposal. Furthermore, the SEM-FIB will support an increase in the efficiency of production of micro-samples that will also reduce the radiation exposure of the personnel. It also leads to a cost reduction and makes this type of analysis also interesting for the industry.The shielded FIB is crucial for the optimal exploitation of PSI’s unique research infrastructure and nuclear materials, for the acquisition of additional competitive second part (e.g., SNF, ERC, ...) and international funding (e.g., industry) or for international collaborations and participation in international programs, but also for the education and attraction of young talents and highly-qualified foreign scientists and for visibility in general, leading to unparalleled opportunities for scientific publishing.The FIB is a central and integral element of the new research strategy of the Nuclear Energy and Safety Research Department (NES). Both the research committee of NES and the scientific advisory committee of the Laboratory for Nuclear Materials and Hotlab Division highly recommend and support this strategic investment. Support letters from national & international scientific institutes or universities and from industry clearly demonstrate the broad interest in and timely need of this investment.