Project

Back to overview

SPOT: Single Protein On Target

Applicant Fink Hans-Werner
Number 157734
Funding scheme R'EQUIP
Research institution Physik-Institut Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Condensed Matter Physics
Start/End 01.04.2015 - 31.03.2016
Approved amount 110'000.00
Show all

All Disciplines (11)

Discipline
Condensed Matter Physics
Material Sciences
Biophysics
Other disciplines of Physics
Biochemistry
Electrical Engineering
Physical Chemistry
Cellular Biology, Cytology
Fluid Dynamics
Molecular Biology
Microelectronics. Optoelectronics

Keywords (15)

Microfluidics; Nanoelectronics; Graphene; Cell labeling; Magnetic nanostructures; Holography; Nanomesh; Single molecule imaging; Boron Nitride; Femtoliter; Mesoscopic devices; Direct patterning; Single molecule trapping; Nanotechnology; DNA charge transport

Lay Summary (German)

Lead
SPOT: Single Protein On TargetEine neuartige Technologie erlaubt das direkte Drucken von Strukturen im sub-Mikrometer Bereich; ein Verfahren, das ähnlich zum Drucken mit Hilfe eines kommerziellen Tintenstrahldruckers ist, jedoch auf einer viel kleineren Skala.
Lay summary

Die Anwendungen reichen vom Drucken feinster leitender Drähte, die Mikro-Elektroden darstellen, um elektrische Ströme zu transportieren bis hin zum Aufbringen einzelner Proteine, die in einem kleinen Tropfen eines Lösungsmittels gezielt auf eine Oberfläche, in unserem Fall freitragendes Graphene, gesprüht werden können.

Wir wollen diese neu aufgekommene Technologie an der Universität Zürich nutzen, um Innovationen im Bereich der Oberflächenphysik, Biophysik und der Physikalischen Chemie damit zu generieren. Die Möglichkeit Tropfen mit nur Femtoliter (10-15 Liter) Volumina mit einer Genauigkeit von 200 nm zu platzieren,  wird uns ganz neue Möglichkeiten eröffnen, wie die Visualisierung individueller Elektronen Transfer Prozesse, das gezielte Deponieren in wohl definierten Strukturen von Proteinen auf Graphene und die Musterherstellung einzelner magnetischer Cluster auf Oberflächen. In Bezug auf biologische Fragestellungen werden wir einzelne Biomoleküle gezielt in Flüssigkeits-Fallen bringen und einzelne Proteine gezielt auf Zell- oder Gewebe-Oberflächen mit einer Präzision von 200 nm anbringen können, um damit Forschung im Bereich der Evolutionsbiologie zu betreiben.

Wir erwarten, dass diese Technologie wichtige neue Möglichkeiten eröffnen wird, die den Forschungsplatz Schweiz in den Gebieten Strukturbiologie, Biochemie und der Physik und Chemie an Oberflächen stärken wird.  

Direct link to Lay Summary Last update: 17.04.2015

Responsible applicant and co-applicants

Collaboration

Group / person Country
Types of collaboration
Prof. Gianni Dietler; EPFL Switzerland (Europe)
- Research Infrastructure

Associated projects

Number Title Start Funding scheme
138961 New experimental concepts in the manipulation of matter at the nanoscale 01.06.2012 SNSF Professorships
148084 Coherent Diffraction Imaging of Graphene-Supported Single Biomolecules at Atomic Resolution 01.10.2013 Ambizione
153312 Surface physics with single-layer materials and molecular layers 01.04.2014 Project funding (Div. I-III)
144560 Biomechanics during development - a model for soft condensed matter 01.10.2012 Interdisciplinary projects
150049 Exploring the Resolution Limit of Coherent Low-Energy Electron Diffraction Microscopy 01.10.2013 Project funding (Div. I-III)
147201 Nitride Cluster Fullerene Spin Shuttles: The role of cluster composition for single molecule magnet behavior 01.04.2014 Project funding (Div. I-III)

Abstract

A novel technology, allowing for direct printing of sub-micrometer structures on arbitrary substrates has been put forth in the past decade by the pioneering work of Jennifer Lewis at the University of Illinois. Meanwhile, this technology has been established as a mature and powerful tool in a few prominent laboratories worldwide. The key players in this field are at Harvard University (Jennifer Lewis, formerly at the University of Illinois), Princeton University (Michael McAlpine) and at the University of Cambridge (Keith Martin).Applications range from using flexible, stretchable spanning microelectrode wires to carry electrical signals between circuits by printed highly conductive silver wires all the way to the possibility of delivering individual proteins to a selected site on a substrate.We would like and appreciate to have this emerging technology available at the University of Zurich by pur-chasing such equipment, an SIJ S050, from the only commercial vendor SIJ Technology, a small company located at the National Institute of Advanced Industrial Science and Technology in Tskuba, Japan.The ability to deposit sub-femtoliter droplets with 200 nm position accuracy would enable us to advance our basic research capabilities in a variety of important fields, including the visualisation of individual electron transfer processes in mesoscopic structures such as freestanding graphene or conducting individual polymers, the deposition and patterning of magnetic cluster arrays on surfaces, the anchoring of individual proteins on freestanding graphene for single molecule structural biology, single molecule studies in fluidic traps and, last but not least, the delivery of individual proteins to live tissues with a position accuracy of 200 nm for developmental biology studies.Apart from the specific applications described in this proposal, the availability of this novel technology tool in Switzerland is likely to trigger and advance not yet in detail foreseen further innovations in major and well established research areas in Switzerland, ranging from single molecule studies in biochemistry to mesoscopic device physics, electrical engineering, bioelectronics and finally all the way to pharmaceutical and possibly even medical science applications.
-