Project

Back to overview

Influence of H-bonding on dynamical properties of Ionic Liquids

English title Influence of H-bonding on dynamical properties of Ionic Liquids
Applicant Embs Jan Peter
Number 157175
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Other disciplines of Physics
Start/End 01.07.2015 - 30.06.2019
Approved amount 262'596.00
Show all

Keywords (8)

molecular dynamics simulations; ionic liquids; vibrational density of states; charge transport; neutron scattering; proton dynamics; quasielastic neutron scattering; hydrogen bonds

Lay Summary (German)

Lead
Ionische Flüssigkeiten (Ionic Liquids = ILs) sind Salze mit einem Schmelzpunkt unter 100 oC. Das große Anwendungsspektrum dieser Flüssigkeiten umfasst unter anderem ihren Einsatz als flüssige Elektrolyte in energierelevanten Anwendungen, z.B. in Batterien. Der Ladungstransport in solchen Elektrolyten wird wesentlich durch die Mobilität der involvierten Ionen beeinflusst. Ein detailliertes Verständnis der Dynamik der Ionen in Ionischen Flüssigkeiten ist Voraussetzung für einen gezielten Einsatz dieser Fluide bzw. für das Design solcher Flüssigkeiten.
Lay summary

Inhalt und Ziel des Forschungsprojektes

 

Das Ziel des Forschungsprojektes besteht in der Untersuchung aller relevanten dynamischen Prozesse in den entsprechenden Ionischen Flüssigkeiten mit Hilfe quasielastischer und inelastischer Neutronenstreuung. Die Verwendung einer Vielzahl von Spektrometern erlaubt es einen großen dynamische Bereich abzudecken. Zeitgleich werden die zu untersuchenden Systeme mittels molekulardynamischer (MD) Simulationen beschrieben. Diese Simulationen decken den durch Neutronenstreuung zugänglichen dynamischen Bereich ab und erlauben daher ein tieferes Verständnis der Streudaten. Dabei stehen folgende wissenschaftlichen Fragen im Vordergrund: (i) wie wird die Innendynamik durch die Anzahl der potenziellen Wasserstoffbrückenbindungen beeinflusst, (ii) welche Auswirkungen hat die Stärke der Wasserstoffbrückenbindungen auf die Ionendynamik und (iii) wie sieht der Protonentransportmechanismus in der zu untersuchenden Ionischen Fluten aus?

 

 

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsvorhabens

 

Unser Forschungsprojekt wird zu einem tieferen Verständnis der molekularen Prozesse in Ionischen Flüssigkeiten beitragen und damit u.a. zu einem gezielten Design neuer, anwendungsorientierter (z.B. im Rahmen energierelevanter Anwendungen) Ionischer Fluide führen.

 

 

Keywords

 

Ionic Liquids, Molecular dynamics simulations, Neutron scattering, Charge transport, Hydrogen Bonds, Vibrational density of States, Quasielastic Neutron Scattering

 

Direct link to Lay Summary Last update: 23.10.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Equilibrium Structure, Hydrogen Bonding, and Proton Conductivity in Half-Neutralized Diamine Ionic Liquids
Mora Cardozo Juan F., Embs J. P., Benedetto A., Ballone P. (2019), Equilibrium Structure, Hydrogen Bonding, and Proton Conductivity in Half-Neutralized Diamine Ionic Liquids, in The Journal of Physical Chemistry B, 123(26), 5608-5625.
Linking Structure to Dynamics in Protic Ionic Liquids: A Neutron Scattering Study of Correlated and Single-Particle Motions
Burankova Tatsiana, Mora Cardozo Juan F., Rauber Daniel, Wildes Andrew, Embs Jan P. (2018), Linking Structure to Dynamics in Protic Ionic Liquids: A Neutron Scattering Study of Correlated and Single-Particle Motions, in Scientific Reports, 8(1), 16400-16400.
Density Functional Computations and Molecular Dynamics Simulations of the Triethylammonium Triflate Protic Ionic Liquid
Mora Cardozo Juan F., Burankova T., Embs J. P., Benedetto A., Ballone P. (2017), Density Functional Computations and Molecular Dynamics Simulations of the Triethylammonium Triflate Protic Ionic Liquid, in The Journal of Physical Chemistry B, 121(50), 11410-11423.
Dynamic Heterogeneity and Flexibility of the Alkyl Chain in Pyridinium-Based Ionic Liquids
Burankova Tatsiana, Simeoni Giovanna, Hempelmann Rolf, Mora Cardozo Juan F., Embs Jan P. (2016), Dynamic Heterogeneity and Flexibility of the Alkyl Chain in Pyridinium-Based Ionic Liquids, in The Journal of Physical Chemistry B, 121(1), 240-249.

Datasets

Proton Dynamics in Protic Ionic Liquids

Author Embs, Jan Peter; Burankova, Tatsiana; Hempelmann, Rolf; Ollivier, Jacques
Publication date 12.06.2017
Persistent Identifier (PID) https://doi.org/10.5291/ILL-DATA.6-05-861
Repository Institute Laue Langevin


Collaboration

Group / person Country
Types of collaboration
Prof. Rolf Hempelmann Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Pietro Ballone Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
QENS 2018 Talk given at a conference H-Bonding Influence on the dynamics of imidazolium-based ionic liquids as probed by QENS 15.07.2018 Hong Kong, China Embs Jan Peter; Mora Cardozo Juan Francisco;
International Conference on Neutron Scattering Talk given at a conference Influenece of H-bonding on dynamical properties of ionic liquids 09.07.2017 Deajeon, Korean Republic (South Korea) Mora Cardozo Juan Francisco; Embs Jan Peter;


Abstract

The main purpose of this project is to study dynamical processes in selected Ionic Liquids using neu-tron scattering techniques. Neutron scattering allows for accessing relaxational and vibrational dy-namics as well as diffusive motions. Molecular Dynamics simulations will supplement the obtained experimental data. We feel very confident that the combination of neutron scattering data and MD simulation results will enable a thorough understanding of the relevant dynamical processes emerging in Ionic Liquids.The neutron scattering experiments will be performed using different time-of-flight spectrometers. The use of instruments with different energy resolutions and divers dynamical ranges enables access to complementary information, and consequently gives a comprehensive picture of the dynamic land-scape on the selected IL systems. Ionic Liquids (ILs) are already used as electrolytes in energy relevant applications like batteries, superca-pacitors and fuel cells. The understanding of the molecular mechanism by which charge (proton) is transported is essential for designing new and better performing ILs. Neutron scattering techniques match the relevant time und length scales and are therefore the perfect tool for investigating these compounds. In addition neutron scattering is the tailored instrument to follow proton dynamics, due to the fact that hydrogen owns the largest incoherent scattering cross section of all elements. Finally deuteration will be used to highlight (or to weaken) the scattering contribution of specific components of the ions constituting the IL under investigation. The experiments we propose in this project will help to answer the following questions:•How does the presence of H-bonding sites influence the dynamics as seen by QENS and inelastic neutron scattering?•How does the low frequency vibrational dynamics reflect the cation-anion interaction? •Does the charge transport (proton dynamics) occur via proton hopping (Grotthuss mechanism) or vehicle mechanism? •How does the coherent/collective dynamics look like in these systems? The work planned in the framework of this project will be done on close collaboration with the group of Prof. R. Hempelmann (Saarland University, Germany) and in cooperation with Dr. M. González from the Institute Laue Langevin in Grenoble, France. The group of Prof. Hempelmann will synthesize and charac-terize all ionic liquids we intend to investigate. Together with Dr. González we will perform Molecular Dynamics simulations. The combination of both, neutron scattering experiments and Molecular Dynamics simulations will facilitate a unique approach to understand in great detail the dynamic processes in these important systems.
-