Projekt

Zurück zur Übersicht

Towards micro-structure-based tractography for quantitative brain connectivity analysis

Titel Englisch Towards micro-structure-based tractography for quantitative brain connectivity analysis
Gesuchsteller/in Thiran Jean-Philippe
Nummer 157063
Förderungsinstrument Projektförderung (Abt. I-III)
Forschungseinrichtung Laboratoire de traitement des signaux 5 EPFL - STI - IEL - LTS5
Hochschule EPF Lausanne - EPFL
Hauptdisziplin Neurophysiologie und Hirnforschung
Beginn/Ende 01.10.2014 - 31.10.2017
Bewilligter Betrag 403'986.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Neurophysiologie und Hirnforschung
Informatik

Keywords (6)

tissue micro-structure; Diffusion MRI; convex optimization; Connectomics; tractography; Medical image processing

Lay Summary (Französisch)

Lead
Dans ce projet, nous allons développer une imagerie IRM de la microstructure de la matière blanche, permettant de quantifier l’intensité de la connectivité entre régions du cerveau par des mesures biologiques telles le diamètre moyen des axones des différents faisceaux, ou la fraction volumique inter- et intra-axonale. Dans ce projet, nous allons ré-établir le lien entre la connectomique et la microstructure. Ce lien permettra de développer des méthodes mathématiques puissantes et rapides, reposant dur de l’optimisation convexe, pour estimer les paramètres de microstructure à partir des données d’IRM de diffusion.
Lay summary

L’imagerie par résonance magnétique (IRM) est une modalité d’imagerie médicale très importante en neuro-imagerie. Un type particulier IRM, appelée IRM de diffusion,  permet d’obtenir des informations sur la connectivité cérébrale de façon non-invasive et, par post-traitement, de reconstruire les trajectoires des grands faisceaux de fibres neuronales qui composent la matière blanche. Cette technique a permis de développer un nouveau domaine de recherche appelé connectomique. Un grand nombre de pathologies cérébrales sont actuellement étudiées par cette technique. 

Bien que très prometteuse, la connectomique présente encore certaines limitations. Essentiellement, elle fournit une mesure indirecte des propriétés biologiques des faisceaux de fibres, et est donc relativement peu sensibles aux altérations subtiles de la structure de la matière blanche.

Dans ce projet, nous allons développer une imagerie IRM de la microstructure de la matière blanche, permettant de quantifier l’intensité de la connectivité entre régions du cerveau par des mesures biologiques telles le diamètre moyen des axones des différents faisceaux, ou la fraction volumique inter- et intra-axonale. Dans ce projet, nous allons ré-établir le lien entre la connectomique et la microstructure. Ce lien permettra de développer des méthodes mathématiques puissantes et rapides, reposant dur de l’optimisation convexe, pour estimer les paramètres de microstructure à partir des données d’IRM de diffusion. 

Une étude de faisabilité de petite taille, sur des patients atteints de sclérose en plaque, validera notre approche.

Direktlink auf Lay Summary Letzte Aktualisierung: 10.11.2014

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
The challenge of mapping the human connectome based on diffusion tractography
Maier-Hein Klaus H., Neher Peter F., Houde Jean-Christophe, Garyfallidis Eleftherios, Zhong Jidan, Chamberland Maxime, Yeh Fang-Cheng, Lin Ying-Chia, Ji Qing, Reddick Wilburn E., Glass John O., Chen David Qixiang, Feng Yuanjing, Gao Chengfeng, Wu Ye, Ma Jieyan, Renjie H., Li Qiang, Westin Carl-Fredrik, Deslauriers-Gauthier Samuel, González J. Omar Ocegueda, Paquette Michael, St-Jean Samuel, et al. (2017), The challenge of mapping the human connectome based on diffusion tractography, in Nature Communications, 8(1), 1349-1349.
In-vivo Bundle-Specific Axon Diameter Distributions Estimation across the Corpus Callosum
Barakovic Muhamed, Romascano David Paul Roger, Girard Gabriel, Descoteaux Maxime, Thiran Jean-Philippe, Daducci Alessandro (2017), In-vivo Bundle-Specific Axon Diameter Distributions Estimation across the Corpus Callosum, in 25th annual meeting of the International Society for Magnetic Resonance in Medicine ({ISMRM}), Honolulu, Hawaii, USA.
Orientation invariant and non-parametric Axon Diameter Distribution mapping using {PGSE} and regularized discrete linear modeling
Romascano David Paul Roger, Barakovic Muhamed, Auría Rasclosa Anna, Dyrby Tim B., Thiran Jean-Philippe, Daducci Alessandro (2017), Orientation invariant and non-parametric Axon Diameter Distribution mapping using {PGSE} and regularized discrete linear modeling, in Proceedings of the 24th annual meeting of the International Society for Magnetic Resonance in Medici, Honolulu, Hawaii, USA.
When does a volume of a bundle achieve saturation? A microstructure informed tractography study
Barakovic Muhamed, Romascano David Paul Roger, Girard Gabriel, Descoteaux Maxime, Thiran Jean-Philippe, Daducci Alessandro (2017), When does a volume of a bundle achieve saturation? A microstructure informed tractography study, in 25th annual meeting of the International Society for Magnetic Resonance in Medicine ({ISMRM}).
Microstructure Informed Tractography: Pitfalls and Open Challenges
Daducci Alessandro, Dal Palú Alessandro, Descoteaux Maxime, Thiran Jean-Philippe (2016), Microstructure Informed Tractography: Pitfalls and Open Challenges, in Frontiers in Neuroscience, 10, 247-247.
Assessment of bundle-specific axon diameter distributions using diffusion {MRI} tractography
Barakovic Muhamed, Romascano David Paul Roger, Dyrby Tim B., Alexander Daniel C., Thiran Jean-Philippe, Daducci Alessandro (2016), Assessment of bundle-specific axon diameter distributions using diffusion {MRI} tractography, in 22nd Annual Meeting of the Organization for Human Brain Mapping.
Reducing acquisition time for microstructure imaging with spatially-regularized global optimization
Auría Rasclosa Anna, Romascano David Paul Roger, Canales-Rodriguez Erick J., Dyrby Tim B., Alexander Daniel C., Thiran Jean-Philippe, Wiaux Yves, Daducci Alessandro (2016), Reducing acquisition time for microstructure imaging with spatially-regularized global optimization, in 22nd Annual Meeting of the Organization for Human Brain Mapping ({OHBM}).
Accelerated Microstructure Imaging via Convex Optimisation for regions with multiple fibres ({AMICO}x)
Auría Rasclosa Anna, Romascano David Paul Roger, Canales-Rodriguez Eric, Wiaux Yves, Dirby T. B., Alexander Daniel, Thiran Jean-Philippe, Daducci Alessandro (2015), Accelerated Microstructure Imaging via Convex Optimisation for regions with multiple fibres ({AMICO}x), in {IEEE} International Conference on Image Processing 2015, Quebec City, Quebec, Canada.
Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data
Daducci Alessandro, Canales-Rodríguez Erick J., Zhang Hui, Dyrby Tim B., Alexander Daniel C., Thiran Jean-Philippe (2015), Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data, in NeuroImage, 105, 32-44.
COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography
Daducci Alessandro, Dal Palu Alessandro, Lemkaddem Alia, Thiran Jean-Philippe (2015), COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography, in IEEE Transactions on Medical Imaging, 34(1), 246-257.
Diffusion spectrum imaging connectomics: a biomarker for staging in psychotic disorders
Griffa Alessandra, Baumann Philipp S, Ferrari Carina, Eric Tanja, Conus Philippe, Do Kim Q, Thiran Jean-Philippe, Hagmann Patric (2015), Diffusion spectrum imaging connectomics: a biomarker for staging in psychotic disorders, in 23rd International Symposium on Magnetic Resonance in Medicine ({ISMRM}).
Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion {MRI}
Daducci Alessandro, Canales-Rodríguez Erick Jorge, Descoteaux Maxime, Garyfallidis Eleftherios, Gur Yaniv, Lin Ying-Chia, Mani Merry, Merlet Sylvain, Paquette Michael, Ramirez-Manzanares Alonso, Reisert Marco, Rodrigues Paulo Reis, Sepehrband Farshid, Jacob Mathews, Caruyer Emmanuel, Choupan Jeiran, Deriche Rachid, Menegaz Gloria, Prckovska Vesna, Rivera Mariano, Wiaux Yves, Thiran Jean-Philippe (2014), Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion {MRI}, in {IEEE} Transactions on Medical Imaging, 33(2), 384-399.

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
Centre for BioImaging (CIBM) Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
University of Parma Italien (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
Karolinska Institutet, Stockholm Schweden (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
Danish Research Centre for Magnetic Resonance Dänemark (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
- Austausch von Mitarbeitern
University College London Grossbritannien und Nordirland (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
CHUV Lausanne Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
- Austausch von Mitarbeitern

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
144529 Fast Global Tractography for Sensitive MR Connectomics 01.10.2012 Projektförderung (Abt. I-III)
153364 Subject-adapted 3D dynamic bio-impedance models: application to blood pressure monitoring 01.04.2014 Projektförderung (Abt. I-III)
175974 Regularized Linear Inverse Problems in Diffusion Magnetic Resonance and Ultrasound Imaging 01.11.2017 Projektförderung (Abt. I-III)
130090 Imaging the connectome in the early phase of psychosis 01.01.2011 Projektförderung (Abt. I-III)
175121 Characterisation of Axonal Tissue Degeneration from Magnetic Resonance Monte Carlo Diffusion Simulations 01.06.2017 Internationale Kurzaufenthalte
170873 Exploring brain communication pathways by combining diffusion based quantitative structural connectivity and EEG source imaging : application to physiological and epileptic networks 01.03.2017 Sinergia
144529 Fast Global Tractography for Sensitive MR Connectomics 01.10.2012 Projektförderung (Abt. I-III)
144467 Statistical methods for brain connectivity analysis 01.10.2012 Projektförderung (Abt. I-III)

Abstract

Diffusion magnetic resonance imaging (MRI) is a unique imaging modality because of its sensitivity to the microscopic movement of water molecules, i.e. Brownian motion, in biological tissues. By characterizing the anisotropy of this random diffusion process in the cerebral white matter, it is possible to infer at the macroscopic level the major neuronal pathways of the brain by means of so-called tractography algorithms. This ability to probe in-vivo the structural wiring of the nervous system with diffusion MRI (a.k.a. connectomics) is of utmost importance in a clinical perspective as it allows, for instance, to monitor the plasticity of the brain and the recovery after a stroke event or the progress of degenerative processes in neurodegenerative diseases.Despite connectomics offers an exquisite tool to investigate non-invasively the architecture of the neuronal connections of the brain, the reconstructions recovered with existing algorithms are not really quantitative. In fact, the information recovered by diffusion MR tractography is orders of magnitude coarser than the actual size of the axons and each of the recovered tracts represents an unspecified set of coherent real fibers. Consequently, the measures of structural connectivity between different brain regions estimated with existing tractography algorithms are only indirectly related to the actual properties of the underlying neuronal connections. On the other hand, diffusion MRI is actually a quantitative modality by nature and several techniques have recently appeared to estimate biological micro-structural properties of the neuronal tissue, such as the average diameter of the axons in each imaging voxel. However, fiber-tracking and tissue micro-structure estimation have been considered so far as two separate problems. As a consequence, to date, nothing can be inferred from diffusion MRI on the micro-structure of the fascicles themselves, ergo today connectomics analyses are not truly quantitative.In this project, we will develop a novel framework to re-establish the link between tractography and tissue micro-structure, opening the door for quantitative and biologically-oriented assessment of the structural connectivity of the brain. Multidisciplinary research will be required to accomplishment our objectives, such as (i) advanced signal processing for the methodological development of a mathematical framework recently proposed by our group (attached to this proposal), (ii) diffusion MRI modeling to reach the proper sensitivity to tracts with different axonal diameters, and (iii) neuroanatomy to validate our approach by comparing ex-vivo acquisitions on fixed samples with histology. With this framework, we expect to drastically improve the sensitivity and specificity of existing connectomics techniques, and to be able to detect subtle changes in brain connectivity due to pathologic conditions.The long-term experience of the applicants in the fields of diffusion MRI and advanced signal processing, together with the recognized expertize in MRI acquisition and histology granted by established collaborations with external partners, will set the ideal grounds towards the expected breakthroughs in quantitative and biologically-oriented brain connectivity analyses.
-