Project

Back to overview

Structural and functional brain plasticity in inhibitory control: towards expertise

English title Structural and functional brain plasticity in inhibitory control: towards expertise
Applicant Spierer Lucas
Number 156854
Funding scheme Project funding (Div. I-III)
Research institution Département de Médecine Université de Fribourg
Institution of higher education University of Fribourg - FR
Main discipline Neurophysiology and Brain Research
Start/End 01.01.2015 - 31.12.2017
Approved amount 409'451.00
Show all

Keywords (4)

Brain plasticity; Executive functions; Inhibitory control; Magnetic resonance imaging

Lay Summary (French)

Lead
Neuroplasticité fonctionnelle et structurelle induite par un entraînement au contrôle inhibiteur: jusqu'à l'expertise.
Lay summary

Le contrôle de l’inhibition, un aspect clef des fonctions exécutives, se réfère à la capacité d'inhiber des processus cognitifs ou moteurs déjà engagés mais plus voulus ou adéquat, afin de permettre un fonctionnement optimale dans des environnements en perpétuel changement. Des déficits au niveau du contrôle de l’inhibition ont été avancés comme favorisant l’émergence de nombreuses pathologies psychiatriques ou neurologiques incluant par exemple l’addiction ou les troubles de l’attention. La réhabilitation de ces pathologies pourrait donc bénéficier d’un renforcement du contrôle de l’inhibition par des entraînements. Le développement de stratégies de réhabilitation efficaces demande en premier lieu de déterminer si et comment la performance de contrôle de l’inhibition peut être améliorée chez des sujets sains et les mécanismes neurophysiologiques sous-tendant ces améliorations comportementales.

En utilisant des méthode psychophysique et d'imagerie par résonance magnétique fonctionnelle et structurelle, nous allons tester les effets d'un entrainement intensif de deux semaines sur le cerveau et si les effets de l'entrainement se généralisent à des tâches et fonctions distantes. Nous allons aussi évaluer si la pratique intensive des sports impliquant le contrôle inhibiteur comme l'escrime induit aussi des modifications des réseaux cérébraux supportant cette fonction.

La portée de notre projet est principalement fondamentale car il vise à élucider les mécanismes neurophysiologiques permettant l’amélioration du contrôle inhibiteur chez le sujet sain. Les entrainement utilisés dans nos études ont cependant été planifiés pour pouvoir être appliqué directement à des populations clinique et ainsi tester leur pertinence pour la réhabilitation de patients souffrant de déficit au niveau du contrôle inhibiteur.



Direct link to Lay Summary Last update: 29.09.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Spatiotemporal brain dynamics underlying attentional bias modifications
Sallard Etienne, Hartmann Lea, Ptak Radek, Spierer Lucas (2018), Spatiotemporal brain dynamics underlying attentional bias modifications, in International Journal of Psychophysiology, 130, 29-39.
Dorsolateral Prefrontal Transcranial Direct Current Stimulation Modulates Language Processing but Does Not Facilitate Overt Second Language Word Production
Radman Narges, Britz Juliane, Buetler Karin, Weekes Brendan S., Spierer Lucas, Annoni Jean-Marie (2018), Dorsolateral Prefrontal Transcranial Direct Current Stimulation Modulates Language Processing but Does Not Facilitate Overt Second Language Word Production, in Frontiers in Neuroscience, 12, 25.
Spatiotemporal brain dynamics supporting the immediate automatization of inhibitory control by implementation intentions
De Pretto Michael, Rochat Lucien, Spierer Lucas (2017), Spatiotemporal brain dynamics supporting the immediate automatization of inhibitory control by implementation intentions, in Scientific Report, 10821.
Sustained enhancements in inhibitory control depend primarily on the reinforcement of fronto-basal anatomical connectivity.
Chavan Camille, Mouthon Michael, Simonet Marie, Hoogewoud Henri-Marcel, Draganski Bogdan, van der Zwaag Wietske, Spierer Lucas (2017), Sustained enhancements in inhibitory control depend primarily on the reinforcement of fronto-basal anatomical connectivity., in Brain structure & function, 1826.
Enhancing frontal top-down inhibitory control with Go/NoGo training.
Hartmann Lea, Sallard Etienne, Spierer Lucas (2016), Enhancing frontal top-down inhibitory control with Go/NoGo training., in Brain structure & function, 3835.
Partly segregated cortico-subcortical pathways support phonologic and semantic verbal fluency: A lesion study.
Chouiter Leila, Holmberg Josefina, Manuel Aurelie L, Colombo Françoise, Clarke Stephanie, Annoni Jean-Marie, Spierer Lucas (2016), Partly segregated cortico-subcortical pathways support phonologic and semantic verbal fluency: A lesion study., in Neuroscience, 275-83.
State dependency of inhibitory control performance: an electrical neuroimaging study.
De Pretto Michael, Sallard Etienne, Spierer Lucas (2016), State dependency of inhibitory control performance: an electrical neuroimaging study., in The European journal of neuroscience, 13265.
Differential patterns of functional and structural plasticity within and between inferior frontal gyri support training-induced improvements in inhibitory control proficiency
Chavan Camille F., Mouthon Michael, Draganski Bogdan, van der Zwaag Wietske, Spierer Lucas (2015), Differential patterns of functional and structural plasticity within and between inferior frontal gyri support training-induced improvements in inhibitory control proficiency, in HUMAN BRAIN MAPPING, (7), 2527-2543.

Collaboration

Group / person Country
Types of collaboration
Prof. Jean-Marie Annoni, Neurology Unit, University of Fribourg Switzerland (Europe)
- Research Infrastructure
- Exchange of personnel
Dr Wietske Van der Zwaag, EPFL - CIBM, Research in MRI technologies Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Explora Workshop 24.09.2016 Université de Fribourg, Switzerland Spierer Lucas; Hartmann Lea; Perriard Benoit;


Associated projects

Number Title Start Funding scheme
143348 Training-induced behavioral and brain plasticity in inhibitory control 01.01.2013 Project funding (Div. I-III)
143348 Training-induced behavioral and brain plasticity in inhibitory control 01.01.2013 Project funding (Div. I-III)
175469 State-dependency of inhibitory control plasticity 01.01.2018 Project funding (Div. I-III)
159780 The two faces of neuroplasticity - In vivo study of brain plasticity induced by epileptic seizures and electroconvulsive therapy 01.04.2016 Project funding (Div. I-III)

Abstract

1. Summary: ‘Structural and functional brain plasticity in inhibitory control: towards expertise’1.1 BackgroundInhibitory control (IC), a key aspect of executive functions, refers to the ability to cancel cognitive or motor processes. Deficits in IC participate in the emergence and maintenance of several prominent brain-related disorders including addiction or ADHD. The rehabilitation of these pathologies might thus benefit from training-induced reinforcement of inhibitory control. The development of therapeutic intervention based on inhibitory control training first requires elucidating whether and how inhibitory control proficiency could be improved in healthy individuals and the supporting brain plastic changes. Although the anatomo-functional organization of inhibitory control has been extensively studied, the plasticity of this function remains largely unknown. Using psychophysics and state of the art magnetic resonance imaging (MRI) approaches, the present project addresses the neurocognitive mechanisms of training-induced behavioral, functional and structural brain plasticity of inhibitory control. 1.2 Working hypothesesRecent evidence from our and other groups indicate that training regimens based on the practice of specifically designed motor inhibitory control Go/NoGo tasks could reinforce domain-general top-down frontal inhibitory control mechanisms, which should in turn improve various types of behavioral and cognitive inhibitory control. The present project test the following distinct, though interrelated hypotheses:A) Extensive (2 weeks) IC training with a motor IC task will improve IC performance. Behavioral improvements will be accompanied by plastic modifications within the domain-general IC brain network (including right ventrolateral prefrontal cortices and basal ganglia) at the functional (hemodynamic response) and structural levels (grey matter density and white matter microstructure). B) Because such training regimen will modify domain-general IC neurocognitive mechanisms, its effects will generalize to untrained remote tasks involving an IC component: interference resolution, task-set updating and delay discounting. C) Years of intensive practice of a complex activity involving an IC component (fencing, >6000 hours over 10 years) will improve fundamental IC performance and lead to anatomo-functional modifications of domain-general IC brain networks putatively analogous to those induced by the training of projects A and B.1.3 Experimental designs and methodsThe same inhibitory control training regimen is used to induce behavioral and brain plasticity in project A and B. Pre- and post- training psychophysics and/or MRI sessions are used to assess the behavioral and anatomo-functional effects of the training and whether the effects persist after the training (project A), and the transfer of the effects of training to untrained tasks (Project B). Project C examines the anatomo-functional modifications in IC in elite fencing athletes, an expert population that undertook years of intensive practice of an inhibition-related complex activity. Psychophysics is used to identify the behavioral improvements and the generalization patterns induced by the inhibitory control training. Functional magnetic resonance imaging (MRI) with BOLD signal analyses, diffusion MRI with tract-based spatial statistics on fractional anisotropy (white matter microstructure) and structural MRI with voxel-based morphometry analyses (grey matter volumetry) are used to investigate training-induced plastic changes at the functional and structural levels, respectively.1.4 Expected value of the proposed projectThe primary importance of these projects is conceptual: to answer several fundamental questions on the anatomo-functional organization of inhibitory control and their plasticity, based on a unique combination of behavioral, functional and structural neuroimaging methods and in the study of an expert population. The planned studies are designed to have an immediate clinical applicability, including the development of targeted diagnosis and rehabilitation strategies for neurological and psychiatric conditions with inhibitory control deficits.
-