Project

Back to overview

From non-linear optics to oceanic rogue waves

English title From non-linear optics to oceanic rogue waves
Applicant Kasparian Jérôme
Number 155970
Funding scheme Project funding (Div. I-III)
Research institution GAP-Optique Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Other disciplines of Physics
Start/End 01.02.2015 - 31.01.2018
Approved amount 355'744.00
Show all

Keywords (5)

Femtosecond laser; Non-linear optics; Modelling; rogue wave; Filamentation

Lay Summary (French)

Lead
La propagation d'impulsions laser ultrabrèves et intenses dans l'air et d'autres milieux transparents est caractérisée par l'émergence de structures autoguidées, connues sous le nom de filaments. La filamentation laser, et a fortiori la filamentation multiple dans le cas des très hautes puissances crêtes, est caractérisée par l'émergence de distributions statistiques à longues queues de la position transverse et longitudinale des filaments, de leur spectre, de leur intensité, ou de leur disposition dans le profil du faisceau.
Lay summary
En nous appuyant sur l'analogie des équations les gouvernant (équation de Schrödinger non-linéaire), les filaments peuvent offrir un modèle des vagues scélérates océaniques. Ces vagues géantes et imprévisibles peuvent atteindre 25 ou 30 m de creux sur une mer bien moins agitée.

Nous proposons d'étudier le comportement statistique de la filamentation de manière à transférer les connaissances acquises à la description des vagues scélérates. De plus, nous caractériserons les motifs formés par les filaments multiple, en termes de transition de phase dans la même classe d'universalité que la percolation à deux dimensions. Ici aussi, l'optique non-linéaire offre un modèle expérimental commode pour ce type de transitions. Les résultats ouvriront également la voie vers l'étude de la prévisibilité et de la prévision des risques de vagues scélérates, grâce à la réversibilité temporelle de l'équation de Schrödinger non-linéaire.

Par ailleurs, l'optimisation du code de propagation existant et son extension à trois dimensions permettra d'étudier des symétries arbitraires, et donc de modéliser précisément la filamentation multiple. Nous proposons en particulier de
- définir la meilleure approche pour prendre en compte l'effet Kerr d'ordre supérieur dans les codes de filamentation, à la lumière des découvertes récentes sur son origine physique
- Analyser la filamentation multiple pour amener les expériences de laboratoire à l'échelle de l'atmosphère et des applications afférentes de la filamentation
- déterminer les conditions laser optimales pour ajuster certaines propriétés des filaments en vue d'applications spécifiques.

Ces résultats aideront à définir les performances requises pour un laser de forte puissance en vue d'applications atmosphériques. En particulier, ils fourniront des informations sur la puissance et l'énergie respectivement nécessaires pour obtenir des effets macroscopiques dans l'atmosphère pour la modulation de la foudre ou des précipitations.
Direct link to Lay Summary Last update: 27.09.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Reconciling different formulations of viscous water waves and their mass conservation
Eeltink D., Armaroli A., Brunetti M., Kasparian J. (2020), Reconciling different formulations of viscous water waves and their mass conservation, in Wave Motion, 97, 102610-102610.
Stabilization of uni-directional water wave trains over an uneven bottom
Armaroli Andrea, Gomel Alexis, Chabchoub Amin, Brunetti Maura, Kasparian Jérôme (2020), Stabilization of uni-directional water wave trains over an uneven bottom, in Nonlinear Dynamics, 101(2), 1131-1145.
Single-spectrum prediction of kurtosis of water waves in a nonconservative model
Eeltink D., Armaroli A., Ducimetière Y. M., Kasparian J., Brunetti M. (2019), Single-spectrum prediction of kurtosis of water waves in a nonconservative model, in Physical Review E, 100(1), 013102-013102.
Viscous damping of gravity-capillary waves: Dispersion relations and nonlinear corrections
Armaroli Andrea, Eeltink Debbie, Brunetti Maura, Kasparian Jérôme (2018), Viscous damping of gravity-capillary waves: Dispersion relations and nonlinear corrections, in Physical Review Fluids, 3(12), 124803-124803.
Energy conservation in self-phase modulation
Béjot P., Kasparian J. (2018), Energy conservation in self-phase modulation, in Physical Review A, 97(6), 063835-063835.
Nonlinear stage of Benjamin-Feir instability in forced/damped deep-water waves
Armaroli Andrea, Eeltink Debbie, Brunetti Maura, Kasparian Jérôme (2018), Nonlinear stage of Benjamin-Feir instability in forced/damped deep-water waves, in Physics of Fluids, 30(1), 017102-017102.
Spectral up- and downshifting of Akhmediev breathers under wind forcing
Eeltink D., Lemoine A., Branger H., Kimmoun O., Kharif C., Carter J. D., Chabchoub A., Brunetti M., Kasparian J. (2017), Spectral up- and downshifting of Akhmediev breathers under wind forcing, in Physics of Fluids, 29(10), 107103-107103.
Recurrence in the high-order nonlinear Schrödinger equation: A low-dimensional analysis
Armaroli Andrea, Brunetti Maura, Kasparian Jérôme (2017), Recurrence in the high-order nonlinear Schrödinger equation: A low-dimensional analysis, in Physical Review E, 96(1), 012222-012222.
Triggering filamentation using turbulence
Eeltink D., Berti N., Marchiando N., Hermelin S., Gateau J., Brunetti M., Wolf J. P., Kasparian J. (2016), Triggering filamentation using turbulence, in Physical Review A, 94(3), 033806-033806.
Spin-Glass Model Governs Laser Multiple Filamentation
Ettoumi W., Kasparian J., Wolf J.-P. (2015), Spin-Glass Model Governs Laser Multiple Filamentation, in Physical Review Letters, 115(3), 033902-033902.

Collaboration

Group / person Country
Types of collaboration
Edouard Hertz, University of Burgundy France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
IRPHE Luminy / Gérard Branger France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
John Carter, Seattle University United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
IUTAM Symposium on wind waves Talk given at a conference Spectral up- and downshifting of Akhmediev breathers under wind forcing 04.09.2017 Londres, Great Britain and Northern Ireland Eeltink Debbie;
Rencontres du nonlinéaire 2017 Poster Effets du vent et de la viscosité sur les ondes océaniques : réduction à une dynamique 2D 22.03.2017 Paris, France Kasparian Jérôme;
Progress in Quantum Electronics 2017 Talk given at a conference Modulating the radiative transmission of the atmosphere with high-power laser filaments 09.01.2017 Snowbird, United States of America Kasparian Jérôme;
Cofil 2016 Talk given at a conference Remote neutralization of high-voltage by laser filaments 05.09.2016 Québec, Canada Kasparian Jérôme;
SIAM-NWCS16 Talk given at a conference The effect of strong wind on Akhmediev breathers 08.08.2016 Philadelphie, United States of America Eeltink Debbie;
Laser Physics 2016 Talk given at a conference Plenary talk: Laser filamentation, from basic physics to applications 11.07.2016 Erevan, Armenia Kasparian Jérôme;
Rencontres du nonlinéaire Poster Turbulence-induced self-focusing and filamentation 16.03.2016 Paris, France Eeltink Debbie;
URSI-AT-RASC 2015 Talk given at a conference Laser-induced condensation in the atmosphere: Mechanism and optimization 18.05.2015 Las Palmas de Majorque, Spain Kasparian Jérôme;


Self-organised

Title Date Place
Conference on laser, weather, and climate 21.09.2015 Genève / OMM, Switzerland

Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions Nuit de la science Western Switzerland 2016

Associated projects

Number Title Start Funding scheme
175697 Nonlinearity in optics and natural systems 01.02.2018 Project funding (Div. I-III)

Abstract

The propagation of intense femtosecond laser pulses in air and other transparent media is characterized by the emergence of self-guided structures, named filaments. Laser filamentation, and a fortiori multiple filamentation at high input powers, is characterized by the emergence of long-tailed statistical distributions of filament transverse and longitudinal position, spectral contents, intensity, or pattern within the laser beam. Based on analogue driving equations (Non-linear Schrödinger equation, NLSE), they can offer a model of oceanic rogue waves, i.e., sudden unpredictable waves of up to 25-30 m high over a smoother sea.We propose to investigate the statistical behaviour of filamentation so as to transfer the acquired knowledge to the description of oceanic rogue waves. Furthermore, we will characterize the multi-filamentation pattern in terms of phase transition in the same universality class as two-dimensional percolation, so as to offer a novel physical system for such class. These results will be used to as-sess the predictability and possibility risk assessment of rogue waves, based on the temporal revers-ibility of the NLSE.Based on the optimization of our filamentation model and its extension a fully three-dimensional model allowing arbitrary symmetries including multiple filamentation and their interaction, we propose to:-Definine the most suitable approach for including of the higher-order Kerr effect in filamentation codes, in light of the recent findings about their physical origin;-Investigating multiple filamentation to support upscaling of laboratory experiments to the atmospheric scale.-Determining the best laser conditions for optimizing specific filament properties in view of their main applications.These results will help defining the required specifications for high-power laser systems dedicated to atmospheric applications. In particular, it will provide information about the power and energy levels required to achieve effects on a macroscopic scale.
-