Project

Back to overview

The fate of exsolved volatiles in shallow magma reservoirs: flow behavior and consequences on crystal mush reactivation and magma eruptability.

Applicant Parmigiani Andrea
Number 154854
Funding scheme Ambizione
Research institution Institut für Geochemie und Petrologie ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.01.2015 - 31.12.2017
Approved amount 428'328.00
Show all

All Disciplines (2)

Discipline
Geophysics
Fluid Dynamics

Keywords (5)

computational fluid dynamics; multiphase fluids; magma reservoirs; volatiles transport; volcanology

Lay Summary (Italian)

Lead
Il destino dei gas magmatici nelle camere magmatiche superficiali: la loro dinamica dei fluidi ed il loro ruolo nella reattivazione di sistemi magmatici caratterizzati da un elevato contenuto cristallino.
Lay summary
Prima di essere eruttato in superficie, il magma viene stoccato in camere magmatiche superficiali. I processi in gioco in queste camere magmatiche poco profonde (~2-7 km di profondità) controllano il tipo di eruzione vulcanica (effusiva o esplosiva) e la quantità di materiale che potrebbe essere eruttato durante un evento eruttivo. Caratterizzare lo stato in cui il magma viene tipicamente stoccato in queste camere magmatiche e comprendere le complesse dinamiche emergenti in un ambiente multifasico (il magma é formato da roccia fusa, cristalli e bolle di gas (i.e. H20,CO2)) é, quindi, di fondamentale importanza per migliorare le nostre capacità di valutazione del rischio associato a future eruzioni vulcaniche.

In questo progetto, grazie alla'uso di complessi esperimenti numerici effettuati su "super-computers", cerchiamo di meglio comprendere la natura multifasica del magma, modellando l'interazione tra cristalli, bolle e roccia fusa alla scala dei cristalli. Il nostro obiettivo principale é meglio capire i meccanismi che controllano il trasporto della fase volatile nelle camere magmatiche. I volatili stoccati nel magma rappresentano l'energia potenziale in grado di guidare un eruzione vulcanica e deciderne il carattere esplosivo o effusivo. Ad esempio, un sistema magmatico in grado di degassificarsi efficacemente (i.e. ridurre il suo contenuto in volatili) perderà parte del suo potenziale eruttivo, dove un sistema in cui i gas vengono accumulati (trasporto inefficace di gas) dovrebbe comportarsi in modo più esplosivo.

I modelli sviluppati in questo progetto non solo ci aiuteranno a meglio capire la dinamica delle camere magmatiche nella crosta superficiale, ma ci permetteranno inoltre di suggerire nuovi meccanismi di trasporto di elementi rari (e.g. S, Au, Ag, Hg) verso la superficie.
Direct link to Lay Summary Last update: 12.09.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media
Leclaire Sébastien Andrea Parmigiani Orestis Malaspinas Bastien Chopard and Jonas Latt (2017), Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media, in Physical Review E, 033306.
Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust.
Parmigiani A, Faroughi S, Huber C, Bachmann O, Su Y (2016), Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust., in Nature, 532(7600), 492-5.
Pore-scale simulations of concentration tails in heterogeneous porous media
Paolo Roberto Di Palma Andrea Parmigiani Christian Huber Nicolas Guyennon Paolo Viotti, Pore-scale simulations of concentration tails in heterogeneous porous media, in Journal of Contaminant Hydrology,, 205.
The mechanics of shallow magma reservoir outgassing
Parmigiani A. Degruyter W. Leclaire S. Huber C. Bachmann O., The mechanics of shallow magma reservoir outgassing, in Geochemistry, Geophysics, Geosystems, 18(8).
Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models
S Leclaire A Parmigiani B Chopard J Latt, Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models, in International Journal of Modern Physics C.

Collaboration

Group / person Country
Types of collaboration
Stefanie Hautmann, ETHZ-ERDW Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Mattia Pistone, UNIL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Dr. Kong, ETHZ-ERDW Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Chrisitan Huber's Laboratory. Earth and Space Sciences Department. Georgia Institute of Technology. United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Parallel and Scientific Computing group. Computer Science Department. University of Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Wim Degruyter, Cardiff University-Wales Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Cities on volcanoes 9 Poster The volatile budget of evolved and crystal rich silicic magmatic bodies 20.11.2016 Puerto Varas, Chile Parmigiani Andrea;
102 Congresso Nazionale della Societa' Italiana di Fisica Talk given at a conference Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust 26.09.2016 padova, Italy Parmigiani Andrea;
2016 EGU Meeting Vienna Talk given at a conference Why are plutons dry? Outgassing mechanisms of crustal magmatic bodies.“A pore-scale multiphase porous medium perspective” 17.04.2016 Vienna, Austria Parmigiani Andrea;
13th Swiss Geoscience Meeting Poster Lattice Boltzmann pore-scale calculations of buoyant non-wetting fluids in heterogeneous porous media 20.11.2015 Basel, Switzerland Parmigiani Andrea;
PASC 2015 Poster From Capillary to Bubbly Flow: the Fate of Low Reynolds Number, Buoyancy Driven Fluids Transport at Strong Porosity Transition 01.06.2015 Zurich, Switzerland Parmigiani Andrea;
Interpore 2015 Padova Individual talk From viscous fingering to bubbly flow: the fate of low Reynolds number, buoyancy driven non-wetting fluid transport at strong porosity transitions 18.05.2015 padova, Italy Parmigiani Andrea;


Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Bubbles lead to disaster eth International 2016

Abstract

Processes at play in sub-volcanic magma reservoirs control the volume, duration and style of volcanic eruptions. They also deeply affect the concentration and transport of volatile elements (e.g., H2O, CO2, S, Cl) and precious metals (e,g., Au, Ag, Cu, Hg) in the upper part of the Earth's crust. Hence, understanding how such reservoirs work is a central goal of geosciences. One of the main challenges that researchers face in physical volcanology is to unravel the multiphase dynamics that control the separation of dense crystals and low-density bubbles contained in high viscosity silicate melts at high pressures and temperatures. Such reservoirs also typically evolve in open-system, interacting with cold wall rocks and hot recharge from below, making their dynamical response particularlycomplex. One way to better constrain magma chambers evolution is by using numerical simulations that directly take into account the multi-phase nature of such systems, and focus on the scale of actual crystals and bubbles. Using highly-parallelized numerical codes and computer clusters, it is now possible to model the physical interaction of crystals, bubbles and melts with different physical properties at the crystal grain scale and investigate the evolution of the system through time. Over the past years, colleagues and I have developed Lattice Boltzmann models that provide a framework to study increasingly complicated magma reservoirs processes. This proposal builds on this previous research, bringing additional levels of complexities to highlight the non-linear processes that happen in real systems. The goal of the proposed activity is to study how volatiles cycle through in magma chambers. We will study how solubility and diffusion in the silicate melt affect the fate of volatiles in magmas during their maturation (crystallization) and reactivation (partial melting). Particularly, we aim at investigating the effect of partial melting of a crystal mush that leads to the progressive undersaturation of the melt and how it affects the transport of buoyant exsolved volatiles coming from degassing magma recharges. The model we propose to develop will not only bring new light on (1) the dynamics of magma reservoirs in the upper crust, with fundamental implications on their eruptability, and (2) the transport of key elements (S, Au, Ag, Hg) towards the surface, but can also be applied to carbon sequestration in porous aquifers, which is controlled by many of the same processes.In addition, predicting the non-linear behavior of natural systems by means of numerical simulations is a powerful and promising technique for the future, but is also a challenging route to take for new researcher. The possibility of involving a PhD student in the development of such models within this Ambizione project is therefore a key asset to the Swiss modeling community.
-