Project

Back to overview

Carbon Dioxide Hydrogenation: New Synthetic Perspectives for Chemical Energy Carriers

English title Carbon Dioxide Hydrogenation: New Synthetic Perspectives for Chemical Energy Carriers
Applicant Rudolf von Rohr Philipp
Number 154448
Funding scheme Sinergia
Research institution Institut für Verfahrenstechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Chemical Engineering
Start/End 01.08.2014 - 31.07.2018
Approved amount 1'064'234.00
Show all

Keywords (5)

C1 Feedstock; Heterogeneous Catalyst; Carbon Dioxide Hydrogenation; high pressure microsystem; First Principles Molecular Modelling

Lay Summary (German)

Lead
Kohlendioxid soll durch eine Reaktion mit Wasserstoff zu nutzbaren Chemikalien wie Methanol und Ameisensäure umgewandelt werden. Die Ameisensäure kann als Wasserstoffträger betrachtet werden und Methanol ist ein zentraler Baustein für viele bekannte chemische Stoffe.Mittels heterogener und immobilisierter homogener Katalyse soll gleichzeitig Ameisensäure und Methanol entstehen durch die Zwischenreaktion zu Methylformiat bei hohen bis sehr hohen Drücken. Die Experimente werden im Mikroreaktor durchgeführt bei kontinuierlicher Fahrweise, um ein zweistufiges Verfahren zu entwickeln. Das Design des Hydrierkatalysators mit verbesserter Aktivität, Selektivität und Stabilität hängt massgebend ab vom Verständnis der aktiven Oberflächenstellen und vom Reaktionsmechanismus. Zum Verständnis und zur gezielten Entwicklung eines effektiven Katalysators sollen Untersuchungen spektroskopischer Art und theoretischer Art beitragen.
Lay summary

Kohlendioxid soll durch eine Reaktion mit Wasserstoff zu nutzbaren Chemikalien wie Methanol und Ameisensäure umgewandelt werden. Die Ameisensäure kann als Wasserstoffträger betrachtet werden und Methanol ist ein zentraler Baustein für viele bekannte chemische Stoffe.

Mittels heterogener und immobilisierter homogener Katalyse soll gleichzeitig Ameisensäure und Methanol entstehen durch die Zwischenreaktion zu Methylformiat bei hohen bis sehr hohen Drücken. Die Experimente werden im Mikroreaktor durchgeführt bei kontinuierlicher Fahrweise, um ein zweistufiges Verfahren zu entwickeln. Das Design des Hydrierkatalysators mit verbesserter Aktivität, Selektivität und Stabilität hängt massgebend ab vom Verständnis der aktiven Oberflächenstellen und vom Reaktionsmechanismus. Zum Verständnis und zur gezielten Entwicklung eines effektiven Katalysators sollen Untersuchungen spektroskopischer Art und theoretischer Art beitragen.

Direct link to Lay Summary Last update: 05.07.2018

Responsible applicant and co-applicants

Employees

Publications

Publication
CO2 Hydrogenation to Formate with Immobilized Ru-Catalysts based on Hybrid Organo-Silica Mesostructured Materials
Copéret Christophe, Hung-Kun Lo (2018), CO2 Hydrogenation to Formate with Immobilized Ru-Catalysts based on Hybrid Organo-Silica Mesostructured Materials, in ChemCatChem.
Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol
Reymond Helena, Amado-Blanco Victor, Lauper Andreas, Rudolf von Rohr Philipp (2017), Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol, in ChemSusChem, 10(6), 1166-1174.
Reaction Process of Resin-Catalyzed Methyl Formate Hydrolysis in Biphasic Continuous Flow
Reymond Helena, Vitas Selin, Vernuccio Sergio, von Rohr Philipp Rudolf (2017), Reaction Process of Resin-Catalyzed Methyl Formate Hydrolysis in Biphasic Continuous Flow, in Industrial & Engineering Chemistry Research, 56(6), 1439-1449.
Micro-view-cell for phase behaviour and in situ Raman analysis of heterogeneously catalysed CO2 hydrogenation
Reymond H., Rudolf von Rohr P. (2017), Micro-view-cell for phase behaviour and in situ Raman analysis of heterogeneously catalysed CO2 hydrogenation, in Review of Scientific Instruments, 88(11), 114103-1.
Role of Water, CO2, and Noninnocent Ligands in the CO2 Hydrogenation to Formate by an Ir(III) PNP Pincer Catalyst Evaluated by Static-DFT and ab Initio Molecular Dynamics under Reaction Conditions
Praveen C. S., Comas-Vives A., Copéret C., VandeVondele J., Role of Water, CO2, and Noninnocent Ligands in the CO2 Hydrogenation to Formate by an Ir(III) PNP Pincer Catalyst Evaluated by Static-DFT and ab Initio Molecular Dynamics under Reaction Conditions, in Organometallics, xx.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
13th European Congress on Catalysis (Europacat) Talk given at a conference Unravelling the role of catalytically active metals in continuous production of methyl formate by hydrogenation of carbon dioxide 27.08.2018 Florence, Italy Urakawa Atsushi; Bansode Atul;
6th International Congress on Operando Spectroscopy Poster Unique reactivity of silver in CO2 hydrogenation to formates and subsequent esterification with methanol to methyl formate 15.04.2018 Estepona, Spain Bansode Atul; Urakawa Atsushi;
23rd National Symposium on Catalysis Talk given at a conference Unique reactivity of silver in CO2 hydrogenation to formates and subsequent esterification with methanol to methyl formate 17.01.2018 Bengaluru, India Bansode Atul; Urakawa Atsushi;
Materials, Characterization, and Catalysis workshop Talk given at a conference Unique reactivity of Ag and mechanistic insights into selective CO2 hydrogenation to methyl formate 15.01.2018 Zurich, Switzerland Bansode Atul; Urakawa Atsushi;
Forefront of Molecular Dynamics at Surfaces and Interfaces: from a single molecule to catalytic reaction (IIRC5) Talk given at a conference Hunting Surface Intermediates and Active Sites in Carbon Dioxide Conversion Catalysis 20.11.2017 Tokyo, Japan Urakawa Atsushi;
TU/e-ICAT Joint International Symposium on Catalysis for Sustainable Society Talk given at a conference Hunting Surface Intermediates and Active Sites in Carbon Dioxide Conversion Catalysis 03.11.2017 Eindhoven, Netherlands Urakawa Atsushi;
SCS meeting Poster Formation of Formic Acid via CO2 Hydrogenation with Silica-Supported Transition Metal Pincer Complexes 21.08.2017 Bern, Switzerland Copéret Christophe; Lo Hung-Kun;
SECAT'17 Talk given at a conference New insights into the CO2 hydrogenation towards methyl formate using silver as a catalytically active metal 26.06.2017 Oviedo, Spain Urakawa Atsushi; Bansode Atul;
Swiss Chemical Society Fall Meeting 2016 Poster Formation of formic acid via CO2 hydrogenation with Silica-supported transition metal pincer complex 15.09.2016 Zurich, Switzerland Lo Hung-Kun; Copéret Christophe;
IMRET14 Talk given at a conference Operando Raman spectroscopy of high-pressure CO2 hydrogenation 11.09.2016 Beijing, China Rudolf von Rohr Philipp; Reymond Helena;
IMRET14 Poster View-cell for in situ analysis in microreactors under harsh operating conditions 11.09.2016 Beijing, China Reymond Helena; Rudolf von Rohr Philipp;
Zing Continuous Flow Chemistry Talk given at a conference Continuous formic acid synthesis in a millireactor 25.04.2016 Albufeira, Portugal Rudolf von Rohr Philipp; Reymond Helena;
Zing Conference on Carbon Dioxide Catalysis Talk given at a conference Exploiting High Pressure Advantages in Catalytic Hydrogenation of Carbon Dioxide to Methanol 19.04.2016 Albufeira, Portugal Urakawa Atsushi; Bansode Atul;
Zing Conference on Carbon Dioxide Catalysis Poster Continuous production of methyl formate by hydrogenation of carbon dioxide 19.04.2016 Albufeira, Portugal Bansode Atul; Urakawa Atsushi;
Zing Conference on Carbon Dioxide Catalysis Talk given at a conference CO2 hydrogenation using an Ir(III) pincer catalyst: The mechanism from DFT and ab-initio molecular dynamics 19.04.2016 Albufeira, Portugal Chandramathy Surendran Praveen;
Swiss association of Computational Chemistry, Spring Meeting Poster CO2 hydrogenation using an Ir(III) pincer catalyst: DFT insight 05.02.2016 Bern, Switzerland Chandramathy Surendran Praveen; VandeVondele Joost;


Awards

Title Year
Outstanding young researcher award at International Conference on Carbon Dioxide Utilization (ICCDU) 2018

Associated projects

Number Title Start Funding scheme
160957 Rationally Designing Sinter-Free, Efficient Catalysts for CO2 Reduction and Other Chemical Transformations 01.04.2016 International short research visits

Abstract

The hydrogenation of CO2 into chemicals and fuels is an innovative technology to mitigate CO2 emissions by the conversion of waste CO2 to methanol and formic acid. Because hydrogen production is an established, efficient process powered by renewable energy, large-scale CO2 hydrogenation can provide a green process for producing those alternative fuels/C1 feedstocks. The demand of methanol and formic acid in the near future is expected to drastically increase as methanol is a key C1 building block that can also be used in direct fuel cells and formic acid is considered as an efficient hydrogen carrier. While synthesis of methanol from syngas is a robust commercial process that can be readily adapted to CO2/H2 feeds, CO2 hydrogenation to formic acid is limited by thermodynamics and the facile decomposition of formic acid back to CO2 and H2. Furthermore, formic acid derivatives can only be produced using homogeneous catalysts, limiting process efficiency. The objective of this project is a direct conversion of CO2-derived methanol and formic acid to methyl formate intermediate in order to overcome thermodynamic constraints and to generate methanol and formic acid through its hydrolysis in a consecutive step. While methanol production and methyl formate hydrolysis are already well understood, an efficient overall process requires the development of robust heterogeneous CO2 hydrogenation catalysts selective for formic acid. Hence, the detailed understanding of the overall process, from the catalyst design to the process engineering, remains a formidable challenge. This project encompasses the development of efficient heterogeneous catalysts where two strategies will be evaluated: 1) the immobilization of homogeneous catalysts, which involves the understanding of the best ligand sets through a combined experimental and computational approaches and the subsequent development of the most promising immobilized catalysts, and 2) the tuning of selectivity of more classical heterogeneous catalysts for methanol synthesis towards methyl formate production, which involves both catalyst development and a detailed understanding of the surface chemistry of supported metal particles through in situ and computational studies. Additional critical aspects of this project are process engineering, microreactor and high-pressure technology under continuous operation (up to 1000 bar), which will bring advantages in catalyst screening, evaluating thermodynamic limits (the comprising reactions are known to be boosted at high pressure) and a simulation-based design of in situ cells for spectroscopic and visual inspection of phase behavior to identify possible phase separation during the reaction. It is thus not surprising that the project requires a synergistic approach, which combines the expertise across the scale of catalyst design and evaluation: from molecular chemistry and immobilization of homogeneous catalysts (group of Prof. Copéret), surface chemistry and classical heterogeneous catalysis including spectroscopy (group of Dr. A. Urakawa), computational chemistry (group of Prof. J. VandeVondele) and process engineering (Prof. P. Rudolf von Rohr).
-