Project

Back to overview

Predicting properties of realistic zigzag like graphene nanoribbons, a DFT challenge

English title Predicting properties of realistic zigzag like graphene nanoribbons, a DFT challenge
Applicant Pignedoli Carlo Antonio
Number 153661
Funding scheme Project funding (Div. I-III)
Research institution Eidg. Materialprüfungs- und Forschungsanstalt (EMPA)
Institution of higher education Swiss Federal Laboratories for Materials Science and Technology - EMPA
Main discipline Material Sciences
Start/End 01.07.2014 - 30.06.2015
Approved amount 61'433.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Physical Chemistry

Keywords (6)

nanotechnology; transport ; nanoribbons; ab initio simulations; 1D nanostructures; defects

Lay Summary (Italian)

Lead
Il grafene, materiale bidimensionale formato da un reticolo regolare di atomi di carbonio, presenta straordinarie proprietà elettroniche che lo rendono un materiale molto promettente per la realizzazione di dispositivi innovativi. Il suo impiego nel campo della tecnologia dell' informazione è ostacolato dal fatto che il materiale non presenta un gap elettronico. Un modo per indurre la presenza di gap nel grafene è confinarlo in una dimensione “tagliandolo” in sottili nastri cosiddetti “graphene-nanoribbons” (GNR). Recentemente il nostro laboratorio è riuscito a dimostrare una tecnica di sintesi per la realizzazione di GNRs con uno spessore dell’ordine del nanometro garantendo una precisione atomica per GNR di diverse geometrie. Per spianare la strada alla realizzazione di nuovi dispositivi basati sulla combinazione di diversi GNR con geometrie opportunamente studiate, occorre una profonda sinergia tra esperimento e simulazione al calcolatore.
Lay summary

Soggetto e obiettivo

Il nostro obiettivo principale è quello di studiare le proprietà di una particolare classe di GNRs cosiddetti zig-zag (ZGNR) per la particolare geometria dei loro bordi. Questa classe di materiali ha potenziali applicazioni nel campo della spintronica ma al momento non è ancora stata dimostrata la possibilità’ di realizzarli sulla nanoscala con precisione atomica.   Ne nostro progetto studieremo con simulazioni al calcolatore i possibili meccanismi di reazione che potrebbero permettere la sintesi di ZGNR a partire da specifici precursori molecolari. Affineremo i metodi di simulazione che sono necessari per comprendere le proprieta’ di questi materiali come appaiono in un esperimento condotto nelle condizioni di sintesi (ovvero per materiali supportati da un substrato).

In aggiunta studieremo le proprietà di una nuova categoria di nastri realizzati a partire da porfirine, una particolare classe di molecole capaci di contenere atomi di metallo, interessanti per le loro proprietà magnetiche.

Contesto socio-scientifico

Il nostro lavoro offrira’ alla comunita’ scientifica nuovi strumenti per il confronto diretto tra simulazione ed esperimento nella caratterizzazione di nanomateriali. I nostri risultati saranno di fondamentale supporto per la realizzazione, per la prima volta, di nastri di grafene, dello spessore di pochi nanometri, privi di difetti a livello atomico e con geometria dei bordi di tipo zig-zag.

 

Direct link to Lay Summary Last update: 16.04.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
On-Surface Synthesis of Atomically Precise Graphene Nanoribbons
L. Talirz P. Ruffieux R. Fasel (2016), On-Surface Synthesis of Atomically Precise Graphene Nanoribbons, in Advanced Materials, 28, 6222.
Giant edge state splitting at atomically precise graphene zigzag edges
S. Wang L. Talirz C. A. Pignedoli X. Feng K. Müllen R. Fasel P. Ruffieux (2016), Giant edge state splitting at atomically precise graphene zigzag edges, in Nature Communications, 7, 11507.
On-surface synthesis of graphene nanoribbons with zigzag edge topology
P. Ruffieux S. Wang B. Yang C. Sánchez-Sánchez J. Liu T. Dienel L. Talirz P. Shinde C. A. Pi (2016), On-surface synthesis of graphene nanoribbons with zigzag edge topology, in Nature, 531, 489.
Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy
H. Söde L. Talirz O. Gröning C. A. Pignedoli R. Berger X. Feng K. Müllen R. Fasel P. Ruffieu (2015), Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy, in Phys. Rev. B, 91, 045429.
On-Surface Synthesis of BN-Substituted Heteroaromatic Networks
C. Sánchez-Sánchez S. Brüller H. Sachdev K. Müllen M. Krieg H. F. Bettinger A. Nicolaï V. Meu (2015), On-Surface Synthesis of BN-Substituted Heteroaromatic Networks, in ACS Nano, 9, 9228.
Synthesis of Atomically Precise Graphene Based Nanostructures: a Simulation Point of View
Leopold Talirz Prashant Shinde Daniele Passerone and Carlo Antonio Pignedoli, Synthesis of Atomically Precise Graphene Based Nanostructures: a Simulation Point of View, in Joachim Christian (ed.), Springer, xx, xx.

Collaboration

Group / person Country
Types of collaboration
S3 CNR Nano Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel

Awards

Title Year
Early Postdoc.Mobility Fellowship of the Swiss National Science Foundation 2015
Empa Research Award 2015

Associated projects

Number Title Start Funding scheme
128754 UP-IPAZIA: “UPgrade and full deployment of the Empa/Eawag computational cluster IPAZIA: towards an interdisciplinary on-site resource for computational sciences” 01.04.2010 R'EQUIP
140812 Applied nanoscience: novel catalysts and bottom-up design of graphene-like nanostructures. Computational insight within a surface science laboratory 01.09.2012 Project funding (Div. I-III)
143624 Surface synthesis of covalent organic nanomaterials (SUSY) 01.11.2012 Project funding (Div. I-III)
135435 Organic nanowires with unusual transport properties: a theoretical study 01.07.2011 Project funding (Div. I-III)
172527 New challenges in the synthesis of graphene derived nanostructures 01.09.2017 Project funding (Div. I-III)

Abstract

In the field of graphene-based nanomaterials, the research in our laboratory is evolving according to the long-term perspective of “simulation aided synthesis”: the ability of bringing molecule-specific knowledge into predictive tools to support or discard specific synthetic routes. To this aim we have obtained fundamental results in understanding the diffusion mechanism of molecular precursors at the surface of nobel metals, characterizing substrate mediated polymerization reactions and describing substrate effects on the electronic properties of adsorbates.In the present proposal we focus on computing spectroscopic fingerprints, for graphene based nanomaterials, that can be used directly to interpret experiments. To this aim we are not interested to compute only the intrinsic properties of the (isolated) nanomaterial, but its properties as observed on the metallic substrate, where the material is produced thus, one goal of the present project will be to include substrate effects in the computational schemes usually employed for the calculation of neutral or charged excitations of a system.A initial workpakage will be dedicated to development of the new computational tools in collaboration with experts from the S3-CNR center in Modena, Italy. The remaining part of the project will be dedicated to applications to real systems whose synthesis is feasible and foreseen at Empa.Among the systems that we plan to investigate we consider:porphyrine-containing graphene nanoribbons; to this aim the synthesis of possible molecular precursors suited for the bottom-up fabrication are already subject of investigation in our laboratory. Porphyrins are interesting because of their highly flexible chemistry at the center, providing multifunctional doping sites inside the nanoribbon.zigzag like graphene nanoribbons: different molecular precursors that should allow to fabricate ribbons with edge properties comparable to the properties of ideal zigzag graphene nanoribbons were identified in our laboratory. The question is what can we expect from experiments conducted on a metallic substrate for the measurement of scanning tunneling spectra, optical properties and band structure?A final objective will be investigation of the Diels-Alder reaction that recently attracted particular attention in the context of the bottom-up synthesis of carbon nanotubes (CNTs). We will study the Diels-Alder reaction in a planar system that is more suited to scanning probe investigations. One candidate is the hexabenzocoronene (HBC) molecule, whose armchair-like edge would be transformed into a zigzag-like edge via repeated Diels-Alder cycloaddition.
-