Project

Back to overview

Exploration of emerging magnetoelectric coupling effects in new materials

English title Exploration of emerging magnetoelectric coupling effects in new materials
Applicant White Jonathan
Number 153451
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.07.2015 - 30.06.2018
Approved amount 194'550.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Material Sciences

Keywords (7)

magnetoelectric; spectroscopy; neutron scattering; skyrmion; magnetic insulator; multiferroic; transition-metal oxide

Lay Summary (French)

Lead
Les matériaux fonctionnels ont des propriétés physiques et / ou chimiques qui présentent une forte sensibilité à un changement de l'environnement extérieur, par exemple, aux changements de température, de pression, ou des champs électriques et magnétiques appliqués. Au cours des dernières années, de nouvelles classes de matériaux ont émergé, à savoir les matériaux multiferroïques skyrmionic et magnétoélectriques, où les propriétés fonctionnelles observées surviennent de rupture de symétrie d'ordre magnétique. Non seulement les propriétés magnétiques de ces nouveaux matériaux sont d'un intérêt fondamental, mais en plus, les propriétés fonctionnelles promettent d'améliorer considérablement l'efficacité énergétique par rapport aux matériaux utilisés dans les technologies actuelles. Avec ce projet, nous avons identifié deux frontières de recherche où de nouvelles recherches sur les principes de base est nécessaire avant le développement de nouvelles applications.
Lay summary

Ce projet concerne principalement la découverte et le paramétrage de nouvelles fonctionnalités dans les matériaux magnétiques qui affichent des effets de couplage magnétoélectriques (ME). Les effets de couplage ME permettent le contrôle mutuel des propriétés magnétiques et électriques d'un matériau par un simple champ magnétique ou électrique. En particulier, le contrôle de champ électrique du magnétisme est d'un immense intérêt pour les chercheurs, car il est plus économe en énergie que le contrôle habituel des propriétés magnétiques par des champs magnétiques. La première frontière de notre recherche sur les matériaux ME concerne le couplage ME entre champs électriques et les skyrmions magnétiques dans les matériaux du réseau skyrmion récemment découverts. Ici, nous visons à paramétrer le couplage ME avec les skyrmions, puis à concevoir le couplage afin de chercher à améliorer les effets de couplage ME. La deuxième frontière de recherche concerne une classe extrêmement rare de matériau ME, ce qui affiche des ordres électrique et ferromagnétique simultanés. Ensuite, nous clarifierons les interactions de base qui sous-tendent cet état rare, et étudierons également la classe associée de nouvelles excitations ME d'électromagnon. D'autres nouveaux matériaux aux propriétés associées aux deux sujets seront également étudiés.

 

Direct link to Lay Summary Last update: 29.01.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Metastable skyrmion lattices governed by magnetic disorder and anisotropy in β -Mn-type chiral magnets
Karube K., White J. S., Ukleev V., Dewhurst C. D., Cubitt R., Kikkawa A., Tokunaga Y., Rønnow H. M., Tokura Y., Taguchi Y. (2020), Metastable skyrmion lattices governed by magnetic disorder and anisotropy in β -Mn-type chiral magnets, in Physical Review B, 102(6), 064408-064408.
In situ control of the helical and skyrmion phases in Cu2OSeO3 using high-pressure helium gas up to 5 kbar
Crisanti M., Reynolds N., Živković I., Magrez A., Rønnow H. M., Cubitt R., White J. S. (2020), In situ control of the helical and skyrmion phases in Cu2OSeO3 using high-pressure helium gas up to 5 kbar, in Physical Review B, 101(21), 214435-214435.
Emergent spin-1 Haldane gap and ferroelectricity in a frustrated spin-1/2 ladder
Ueda H., Onoda S., Yamaguchi Y., Kimura T., Yoshizawa D., Morioka T., Hagiwara M., Hagihala M., Soda M., Masuda T., Sakakibara T., Tomiyasu K., Ohira-Kawamura S., Nakajima K., Kajimoto R., Nakamura M., Inamura Y., Reynolds N., Frontzek M., White J.S., Hase M., Yasui Y. (2020), Emergent spin-1 Haldane gap and ferroelectricity in a frustrated spin-1/2 ladder, in Physical Review B, 101(14), 140408-140408.
Emergent topological spin structures in the centrosymmetric cubic perovskite SrFeO3
Ishiwata S., Nakajima T., Kim J.-H., Inosov D. S., Kanazawa N., White J. S., Gavilano J. L., Georgii R., Seemann K. M., Brandl G., Manuel P., Khalyavin D. D., Seki S., Tokunaga Y., Kinoshita M., Long Y. W., Kaneko Y., Taguchi Y., Arima T., Keimer B., Tokura Y. (2020), Emergent topological spin structures in the centrosymmetric cubic perovskite SrFeO3, in Physical Review B, 101(13), 134406-134406.
Deformation of the moving magnetic skyrmion lattice in MnSi under electric current flow
Okuyama D., Bleuel M., White J. S., Ye Q., Krzywon J., Nagy G., Im Z. Q., Živković I., Bartkowiak M., Rønnow H. M., Hoshino S., Iwasaki J., Nagaosa N., Kikkawa A., Taguchi Y., Tokura Y., Higashi D., Reim J. D., Nambu Y., Sato T. J. (2019), Deformation of the moving magnetic skyrmion lattice in MnSi under electric current flow, in Communications Physics, 2(1), 79-79.
Correlation between site occupancies and spin-glass transition in skyrmion host Co10−x2Zn10−x2Mnx
Nakajima T., Karube K., Ishikawa Y., Yonemura M., Reynolds N., White J. S., Rønnow H. M., Kikkawa A., Tokunaga Y., Taguchi Y., Tokura Y., Arima T. (2019), Correlation between site occupancies and spin-glass transition in skyrmion host Co10−x2Zn10−x2Mnx, in Physical Review B, 100(6), 064407-064407.
Magnetoelectric coupling without long-range magnetic order in the spin-1/2 multiferroic Rb2Cu2Mo3O12
Reynolds N., Mannig A., Luetkens H., Baines C., Goko T., Scheuermann R., Keller L., Bartkowiak M., Fujimura A., Yasui Y., Niedermayer Ch., White J. S. (2019), Magnetoelectric coupling without long-range magnetic order in the spin-1/2 multiferroic Rb2Cu2Mo3O12, in Physical Review B, 99(21), 214443-214443.
Negative-pressure-induced helimagnetism in ferromagnetic cubic perovskites Sr1−xBaxCoO3
Sakai H., Yokoyama S., Kuwabara A., White J. S., Canévet E., Rønnow H. M., Koretsune T., Arita R., Miyake A., Tokunaga M., Tokura Y., Ishiwata S. (2018), Negative-pressure-induced helimagnetism in ferromagnetic cubic perovskites Sr1−xBaxCoO3, in Physical Review Materials, 2(10), 104412-104412.
Controlling the helicity of magnetic skyrmions in a β -Mn-type high-temperature chiral magnet
Karube K., Shibata K., White J. S., Koretsune T., Yu X. Z., Tokunaga Y., Rønnow H. M., Arita R., Arima T., Tokura Y., Taguchi Y. (2018), Controlling the helicity of magnetic skyrmions in a β -Mn-type high-temperature chiral magnet, in Physical Review B, 98(15), 155120-155120.
Magnetoelectric inversion of domain patterns
Leo N., Carolus V., White J. S., Kenzelmann M., Hudl M., Tolédano P., Honda T., Kimura T., Ivanov S. A., Weil M., Lottermoser Th., Meier D., Fiebig M. (2018), Magnetoelectric inversion of domain patterns, in Nature, 560(7719), 466-470.
Electric-Field-Driven Topological Phase Switching and Skyrmion-Lattice Metastability in Magnetoelectric Cu2OSeO3
White J.S., Živković I., Kruchkov A.J., Bartkowiak M., Magrez A., Rønnow H.M. (2018), Electric-Field-Driven Topological Phase Switching and Skyrmion-Lattice Metastability in Magnetoelectric Cu2OSeO3, in Phys. Rev. Applied, 10, 014021.
Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3
Bordács S., Farkas D. G., White J. S., Cubitt R., DeBeer-Schmitt L., Ito T., Kézsmárki I. (2018), Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3, in Physical Review Letters, 120(14), 147203-147203.
Low-Field Bi-Skyrmion Formation in a Noncentrosymmetric Chimney Ladder Ferromagnet
Takagi R., Yu X. Z., White J. S., Shibata K., Kaneko Y., Tatara G., Rønnow H. M., Tokura Y., Seki S. (2018), Low-Field Bi-Skyrmion Formation in a Noncentrosymmetric Chimney Ladder Ferromagnet, in Physical Review Letters, 120(3), 037203-037203.
Direct evidence for cycloidal modulations in the thermal-fluctuation-stabilized spin spiral and skyrmion states of GaV4S8
White J. S., Butykai Á., Cubitt R., Honecker D., Dewhurst C. D., Kiss L. F., Tsurkan V., Bordács S. (2018), Direct evidence for cycloidal modulations in the thermal-fluctuation-stabilized spin spiral and skyrmion states of GaV4S8, in Physical Review B, 97(2), 020401-020401.
Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy
Kanazawa N., White J. S., Rønnow H. M., Dewhurst C. D., Morikawa D., Shibata K., Arima T., Kagawa F., Tsukazaki A., Kozuka Y., Ichikawa M., Kawasaki M., Tokura Y. (2017), Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy, in Physical Review B, 96(22), 220414-220414.
Skyrmion formation in a bulk chiral magnet at zero magnetic field and above room temperature
Karube K., White J. S., Morikawa D., Bartkowiak M., Kikkawa A., Tokunaga Y., Arima T., Rønnow H. M., Tokura Y., Taguchi Y. (2017), Skyrmion formation in a bulk chiral magnet at zero magnetic field and above room temperature, in Physical Review Materials, 1(7), 074405-074405.
Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
Bordács S., Butykai A., Szigeti B. G., White J. S., Cubitt R., Leonov A. O., Widmann S., Ehlers D., von Nidda H.-A. Krug, Tsurkan V., Loidl A., Kézsmárki I. (2017), Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet, in Scientific Reports, 7(1), 7584-7584.
Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4
Honda T., White J. S., Harris A. B., Chapon L. C., Fennell A., Roessli B., Zaharko O., Murakami Y., Kenzelmann M., Kimura T. (2017), Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4, in Nature Communications, 8, 15457-15457.
Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet
Karube K., White J. S., Reynolds N., Gavilano J. L., Oike H., Kikkawa A., Kagawa F., Tokunaga Y., Rønnow H. M., Tokura Y., Taguchi Y. (2016), Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet, in Nature Materials, 15(12), 1237-1242.
Direct observation of anisotropic magnetic field response of the spin helix in FeGe thin films
Kanazawa N., White J. S., Rønnow H. M., Dewhurst C. D., Fujishiro Y., Tsukazaki A., Kozuka Y., Kawasaki M., Ichikawa M., Kagawa F., Tokura Y. (2016), Direct observation of anisotropic magnetic field response of the spin helix in FeGe thin films, in Physical Review B, 94(18), 184432-184432.
Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8
Kézsmárki I., Bordács S., Milde P., Neuber E., Eng L. M., White J. S., Rønnow H. M., Dewhurst C. D., Mochizuki M., Yanai K., Nakamura H., Ehlers D., Tsurkan V., Loidl A. (2015), Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8, in Nature Materials, 14(11), 1116-1122.

Collaboration

Group / person Country
Types of collaboration
Prof. Tsuyoshi Kimura, Kimura Lab, Graduate School of Engineering Science, Osaka University, Japan Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Dr. Michel Kenzelmann, Laboratory for Developments and Methods (LDM), Paul Scherrer Institut Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Henrik Rønnow, Laboratory for Quantum Magnetism (LQM), ICMP, EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Yoshinori Tokura, RIKEN CEMS and University of Tokyo Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Christian Rüegg, Laboratory for Neutron Scattering (LNS), Paul Scherrer Institut Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Séminaires "Magnétisme non conventionnel" Individual talk Disordered skyrmion phase stabilised by magnetic frustration in a chiral magnet 21.06.2018 Institut Néel, Grenoble, France White Jonathan;
CMP Seminar at Durham University Individual talk Disordered skyrmion phase stabilised by magnetic frustration in a chiral magnet 16.05.2018 Durham, Great Britain and Northern Ireland White Jonathan;
9th APCTP Workshop on Multiferroics Talk given at a conference Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4 09.11.2017 Tokyo, Japan White Jonathan;
24th General Assembly of the IUCr Individual talk Complex mesoscale magnetic order in the Néel-type skyrmion material GaV4S8 24.08.2017 Hyderabad, India White Jonathan;
VORTEX2017 Talk given at a conference Room temperature skyrmions and robust metastable skyrmion states in Co-Zn-Mn alloys 28.05.2017 Natal, Brazil White Jonathan;
DPG Spring Meeting Individual talk Skyrmions in magnetic materials 19.03.2017 Dresden, Germany White Jonathan;
DPG Spring Meeting Talk given at a conference Room temperature Skyrmions and robust metastable skyrmion states in Co8Zn8Mn4 19.03.2017 Dresden, Germany White Jonathan;
ETHZ Solid State Physics Seminar Individual talk Neutron scattering studies of magnetic Skyrmions below, at, and above room temperature in Co-Zn-Mn alloys 23.02.2017 ETHZ, Switzerland White Jonathan;
Workshop on Neutron Scattering to study Magnetic, Multiferroic and Superconducting Materials (WNS 2016) Talk given at a conference Unveiling new properties and phases of magnetic Skyrmions by neutron scattering experiments 10.02.2016 Bariloche, Argentina White Jonathan;
Topological Phenomena in Noncentrosymmetric Magnets Talk given at a conference Neutron scattering study of magnetism in the polar semiconductor GaV4S8 28.01.2016 Wako, Japan White Jonathan;
EMN Hong Kong 2015 Talk given at a conference Electric Field-Induced Skyrmion Distortion and Giant Lattice Rotation in the Magnetoelectric Insulator Cu2OSeO3 09.12.2015 Hong Kong, Hongkong White Jonathan;
6th European Conference on Neutron Scattering (ECNS 2015) Talk given at a conference Electric Field-Induced Skyrmion Distortion and Giant Lattice Rotation in the Magnetoelectric Insulator Cu2OSeO3 30.08.2015 Zaragoza, Spain White Jonathan;
6th European Conference on Neutron Scattering (ECNS 2015) Poster Magneto-electric domains in the ferromagnetic and ferroelectric phase of Mn2GeO4 30.08.2015 Zaragoza, Spain White Jonathan;


Associated projects

Number Title Start Funding scheme
171003 Discovery and Nanoengineering of Novel Skyrmion-hosting Materials 01.10.2017 Sinergia
146780 Super Resolution Microscopy of the Cilium in Live Cells 01.01.2013 Fellowships for prospective researchers
157809 A ultralow background magnet for neutron scattering possibilities under extreme conditions at SINQ 01.10.2015 R'EQUIP

Abstract

This project is concerned principally with the discovery and parametrization of new functionalities in magnetic materials that display magnetoelectric (ME) coupling effects. ME coupling permits the mutual control of both of a material’s magnetic and electric properties by just a single magnetic or electric field. In particular, the electric field control of magnetism is of intense interest to researchers, because it is more energy efficient than the usual control of magnetic properties by magnetic fields. The first frontier of our research into ME materials concerns the ME coupling between electric fields and magnetic skyrmions in the recently discovered skyrmion-lattice materials. Here we aim to parameterize the ME coupling and the skyrmions, and subsequently engineer the coupling to seek enhanced ME coupling effects. The second frontier of the research concerns an exceedingly rare class of ME material, that which displays simultaneous electric and ferromagnetic order. Here, we will clarify the basic interactions underpinning this rare state, and also study the associated class of novel ME electromagnon excitations. Further new materials with properties relevant to the two topics will also be studied.
-