Project

Back to overview

Information-theoretic approach to thermodynamics

English title Information-theoretic approach to thermodynamics
Applicant Renner Renato
Number 153296
Funding scheme Project funding (Div. I-III)
Research institution Institut für Theoretische Physik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Theoretical Physics
Start/End 01.04.2015 - 31.03.2016
Approved amount 162'742.00
Show all

All Disciplines (2)

Discipline
Theoretical Physics
Information Technology

Keywords (4)

thermodynamics; statistical mechanics; entropies; quantum information theory

Lay Summary (German)

Lead
Während sich die klassische Thermodynamik zur Beschreibung makroskopischer Systeme vielfach bewährt hat, ist sie zur Untersuchung mikroskopischer Systeme nur beschränkt geeignet. Innerhalb dieses Forschungsprojekts soll mit einem informationstheoretischen Ansatz eine erweiterte Theorie entwickelt werden, welche dieser Beschränkung nicht mehr unterliegt.
Lay summary

Die Thermodynamik wurde ursprünglich dazu verwendet, Wärmekraftmaschinen, wie etwa Dampfmaschinen, zu beschreiben. Seither sind die Gesetze der Thermodynamik vielfach getestet worden, jedoch vorwiegend in einem makroskopischen Regime. Mit der sich rasch entwickelnden Nanotechnologie stellt sich nun die Frage, ob diese auch für mikroskopische Maschinen gelten. Diese Frage wird seit ein paar Jahren intensiv erforscht, sowohl in der Theorie als auch im Experiment. Dabei hat sich gezeigt, dass gewisse grundlegende Konzepte der klassischen Thermodynamik angepasst bzw. verallgemeinert werden müssen. Ziel des vorliegenden Forschungsprojektes ist es, mit einem auf der Informationstheorie basierten Ansatz eine konsistente Theorie zu entwickeln, die es erlaubt, mikroskopische thermodynamische Systeme korrekt zu beschreiben und zu analysieren. Der Ansatz soll es auch ermöglichen, thermodynamische Prozesse, bei denen Quanteneffekte dominieren, zu untersuchen. Dazu soll insbesondere auf Erkenntnisse aus der Quanten-Informationstheorie zurückgegriffen werden.

 

Direct link to Lay Summary Last update: 27.02.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Coherence and measurement in quantum thermodynamics
Kammerlander Philipp, Anders Janet (2016), Coherence and measurement in quantum thermodynamics, in Scientific Reports, 22174.
Relative thermalisation
del Rio Lidia, Hutter Adrian, Renner Renato, Wehner Stephanie, Relative thermalisation, in Physical Review E.

Collaboration

Group / person Country
Types of collaboration
Research group of Jonathan Home, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Technical University of Delft Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Singapore University, Centre for Quantum Technologies Singapore (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
University of Exeter Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Workshop on quantum networks Talk given at a conference Finding non-signalling agents in a global theory 30.03.2016 Barcelona, Spain Kraemer Lea;
Thermodynamics in the quantum regime - 6th working group meeting Talk given at a conference Resource theories of knowledge 21.02.2016 Malta, Malta Kraemer Lea;
6th NCCR QSIT General Meeting Poster Carnot's theorem from operational assumptions 03.02.2016 Arosa, Switzerland Kammerlander Philipp Nino Paul;
Colloquium of the Institute of Science and Technology (IST) Individual talk How much work does it cost to process information? 18.01.2016 Vienna, Austria Renner Renato;
Quantum Information Processing Conference (QIP) Poster A mathematical framework for thermodynamics 11.01.2016 Banff, Canada Kammerlander Philipp Nino Paul;
Quantum Information Processing Conference (QIP) Talk given at a conference Recoverability in quantum information theory 10.01.2016 Banff, Canada Sutter David;
Quantum Information Processing (QIP) Poster Resource theories of knowledge 09.01.2016 Banff, Canada Kraemer Lea;
COST ESR Meeting on nanoscale Quantum Optics Talk given at a conference The thermodynamics of quantum information processing 16.11.2015 Attard, Malta Kammerlander Philipp Nino Paul;
Colloquium of 3rd Institute of Physics, University of Stuttgart Individual talk The thermodynamics of quantum information processing 27.10.2015 Stuttgart, Germany Kammerlander Philipp Nino Paul;
Third COST Conference on Quantum Thermodynamics Poster Towards operational phenomenological thermodynamics 12.10.2015 Porquerolles, France Kammerlander Philipp Nino Paul;
Asian Quantum Information Science Conference (AQIS 2015) Talk given at a conference A quantum information approach to time 25.08.2015 Seoul, Korean Republic (South Korea) Renner Renato;
Quantum Physics & Logic Poster Resource theories of knowledge 13.07.2015 Oxford, Great Britain and Northern Ireland Kraemer Lea;
Progress in Electromagnetics Research Symposium (PIERS) Talk given at a conference Coherence in quantum thermodynamics and quantum measurement 06.07.2015 Prague, Czech Republic Kammerlander Philipp Nino Paul;


Self-organised

Title Date Place
Workshop on time in physics 18.06.2016 Zurich, Switzerland

Associated projects

Number Title Start Funding scheme
165843 Fully quantum thermodynamics of finite-size systems 01.10.2016 Project funding (Div. I-III)
135048 Information-theoretic methods for physics 01.04.2011 Project funding (Div. I-III)

Abstract

The aim of this project is to investigate thermodynamical systems, in particular on the nanoscale, using modern methods from information theory. While research at the interface between thermodynamics and information theory has a long tradition, existing studies have mostly been restricted to the asymptotic regime of large systems. However, recently developed information-theoretic tools, in particular "one-shot entropic quantities", now allow to extend this research into the nanoscale regime, where fluctuations as well as quantum effects cannot be neglected. This is of particular interest for experimental physics, where the control of quantum systems becomes increasingly important.
-