Project

Back to overview

Transport properties and electronic structure of one-dimensional electronic systems

English title Transport properties and electronic structure of one-dimensional electronic systems
Applicant Renner Christoph
Number 153123
Funding scheme Project funding (Div. I-III)
Research institution Département de Physique de la Matière Condensée Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Condensed Matter Physics
Start/End 01.09.2014 - 31.10.2015
Approved amount 175'000.00
Show all

Keywords (8)

Electronic properties; Tomanaga Luttinger liquid; Scanning tunneling microscopy; Self-assembly; One dimensional systems; Tunneling spectroscopy; Single atom chains; 1D transport

Lay Summary (French)

Lead
Les propriétés électroniques d’un matériau sont modifiées de manière significative lorsqu’on réduit sa dimensionnalité. Dans la première phase de ce projet de longue haleine, nous avons développé deux structures unidimensionnelles (1D) à la surface du Silicium (001) par auto assemblage de Bismuth. Les «fils» ainsi obtenus offrent des propriétés uniques pour étudier le comportement des électrons confinés en 1D et confronter les modèles théoriques existants avec l’expérience. Ces nanofils peuvent mesurer plusieurs micromètres de long pour une largeur constante de 1.5nm, ils sont parfaitement rectilignes et pratiquement sans défauts. Ils sont stables sous ultra-haut vide jusqu’à 400°C et peuvent, sous certaines conditions, être exposés à l’air sans subir de dégradations importantes. Enfin, ces structures 1D se trouvent sur un substrat semiconducteur, un prérequis pour sonder leurs propriétés de transport intrinsèques à basse énergie.
Lay summary

Objectifs du travail de recherche

Dans ce projet de quatorze mois, nous cherchons à mettre en évidence la structure électronique et les propriétés de transport spécifiques aux structures unidimensionnelles (1D) par microscopie et spectroscopie à effet tunnel. Les objectifs principaux sont de contacter les nanofils assemblés dans les phases précédentes de cette recherche au monde extérieur et réaliser des mesures de transport en faisant passer un courant électrique. De telles mesures seraient une première pour une structure 1D aux dimensions latérales atomiques. Ces contacts sont aussi nécessaires pour permettre l’étude de la structure électronique des nanofils à basse énergie (plus basse que la bande interdite du substrat en Silicium) par spectroscopie tunnel.

L’impact de ces expériences sera à la fois fondamental et appliqué, avec la nécessité de développer et comprendre des interconnections électriques de plus en plus petites en raison des contraintes liées à la miniaturisation croissante des dispositifs électroniques modernes.


Direct link to Lay Summary Last update: 08.07.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Towards surface diffusion potential mapping on atomic length scale
Villarreal Renan, Kirkham Christopher J., Scarfato Alessandro, Bowler David R., Renner Christoph (2019), Towards surface diffusion potential mapping on atomic length scale, in Journal of Applied Physics, 125(18), 184301-184301.
Electronic coupling between Bi nanolines and the Si(001) substrate: An experimental and theoretical study
Longobardi M., Kirkham C. J., Villarreal R., Köster S. A., Bowler D. R., Renner Ch. (2017), Electronic coupling between Bi nanolines and the Si(001) substrate: An experimental and theoretical study, in Physical Review B, 96(23), 235421-235421.
Subatomic electronic feature from dynamic motion of Si dimer defects in Bi nanolines on Si(001)
Kirkham C. J., Longobardi M., Köster S. A., Renner Ch., Bowler D. R. (2017), Subatomic electronic feature from dynamic motion of Si dimer defects in Bi nanolines on Si(001), in Physical Review B, 96(7), 075304-075304.
Structure of self-assembled Mn atom chains on Si(001)
Villarreal R, Longobardi M., Köster S. A., Bowler D. R., Kirkham Ch., Renner Ch. (2015), Structure of self-assembled Mn atom chains on Si(001), in Physical Review Letter, 115, 256104.

Collaboration

Group / person Country
Types of collaboration
Dr. David Bowler, London Centre for Nanotechnology, University College London Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Thierry Giamarchi, DQMP, University of Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Alberto Morpurgo, DQMP, University of Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Quantum Transport in One Dimension Poster Atomic structure of Mn chains on Si(001) resolved by atomic force microscopy 14.09.2015 Dresden, Germany Villarreal de la Fuente Renan;


Associated projects

Number Title Start Funding scheme
117404 Scanning Mott Microscopy to map the spin texture of manganites / Scanning tunneling microscope 01.07.2007 R'EQUIP
162517 Electron matter in unconventional layered superconductors 01.11.2015 Project funding (Div. I-III)
135198 Electronic, magnetic and transport properties of one-dimensional systems 01.09.2011 Project funding (Div. I-III)

Abstract

The objectives of this three year project are to measure the electronic transport properties of an atomic-scale one-dimensional (1D) wire and its local electronic structure. Theory of 1D physics is in many respects ahead of experiment, with a number of predictions still awaiting verification due to the difficulties developing a suitable experimental 1D model system. We have synthesized three atomic-scale candidate systems on Si(001) to study how electrons behave under such extreme quantum confinement conditions. The Bi-nanoline, the Haiku stripe and Haiku dangling bond rows we propose to study offer a range of unique features to address electronic transport in one dimension, quite different from other 1D systems considered in the past: they grow long enough to attach current and voltage probes to an individual atomic-scale nanoline; their atomic structure is known in great details, which is paramount for meaningful transport and spectroscopy data analysis; they are perfectly straight with a constant width over micrometer distances; they grow on flat terraces, independent of any step edges; they are stable in UHV up to 500°C - the Haiku stripe can even be exposed to air at room temperature; finally, they sit on Si(001), a wide band gap semiconductor minimizing the coupling of the low energy 1D states with substrate bulk states. The initial challenge of the proposal is to achieve proper electrical contacts to individual nanolines. Once this has been realized, we shall be looking for characteristic signatures of 1D electrons in temperature dependent STM imaging, tunneling spectra and transport measurements - including characteristic noise, real space charge patterns, quantized conductance and power law dependencies. We shall also attempt to characterize the nanolines using spin polarized STM and other techniques, such as photoemission spectroscopy, optical conductivity and SQUID magnetometry.
-