Project

Back to overview

Electric manipulation of spins in magnetic nanoclusters and quantum dots for quantum information processing

English title Electric manipulation of spins in magnetic nanoclusters and quantum dots for quantum information processing
Applicant Loss Daniel
Number 152500
Funding scheme SCOPES
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.04.2014 - 30.09.2017
Approved amount 75'000.00
Show all

Keywords (3)

magnetic nanoclusters and dots; single-molecule magnets; quantum computing

Lay Summary (German)

Lead
Spins sind die einfachsten in der Natur vorkommenden quantenmechanischen Objekte. Sie sind hervorragend geeignet um die Besonderheiten der Quantenmechanik ohne unnötige Komplikationen zu untersuchen. Um Zugang zu den Quanteneigenschaften von Spins zu erhalten, müssen sie auf kleinstem Raum eingesperrt und innerhalb kurzer Zeitintervalle manipuliert werden. Hierfür eignen sich am besten elektrische Felder, da sie präzise angewandt und schnell an- und abgeschaltet werden können. Ausser rein wissenschaftliche Neugier hinsichtlich ihrem Quantenverhalten zu befriedigen, kann die zuverlässige Kontrolle von Spins auch die Speicherung und Verarbeitung von Informationen verbessern.
Lay summary

Wir planen, Wechselwirkungen zwischen Spins und elektrischen Feldern in zwei neuen Objekten der Nanoskala, Einzelmolekülmagneten und Nanokristallen, zu untersuchen und Protokolle zur Spinkontrolle in Quantenpunkten zu verbessern. Im Bereich der Moleküle wollen wir das Verhalten komplexer Spinkonfigurationen unter dem Einfluss konstanter Felder verstehen, um geeignete Moleküle zur Aufnahme von elektrisch manipulierbaren Spins zu finden und um deren Quanteneigenschaften anhand von Signaturen im von ihnen emittierten Licht zu beschreiben. In den Nanokristallen werden wir Spins unter dem Einfluss von starken elektrischen Feldern modellieren und Spin-Flip Mechanismen suchen. 

Unsere Ergebnisse können neue Wege eröffnen, Quantenmechanik in ihrer einfachsten Form zu untersuchen. In praktischer Anwendung kann die Möglichkeit zum elektrischen Schalten von Spins in Nanokristallen und Molekülen zu schnellen Speicherelementen hoher Kapazität führen. Diese könnten in Zukunft sehr gut zu den präferierten Systemen für die Speicherung klassischer oder quantenmechanischer Information zählen.

Direct link to Lay Summary Last update: 23.04.2014

Lay Summary (English)

Lead
Spins are the simplest fully quantum objects in nature. They are ideal setting to study the weirdness of quantum mechanics while avoiding any unnecessary complexity. To access quantum nature of spins, we must confine them to small volumes, and manipulate within short time intervals. For these purposes the best tools are electric fields, since we can rapidly turn them on and off, and apply with precision. In addition to satisfying curiosity about quantum mechanics, reliable electric control of spins may improve storing and processing of information.
Lay summary

We will study interaction of electric fields and spins in two new classes of nanoscale objects: single-molecule magnets and nanocrystals, and, in addition, improve protocols for spin control in quantum dots.  In the realm of single-molecule magnets, our goal is to understand how complex spin arrangements get affected by the uniform fields.  This knowledge will point to molecular hosts of spins sensitive to external fields.  To detect their quantum properties, we will describe signatures of electrically coupled spins in the emitted light.  We will model spins in strong electric fields within nanocrystals, and search for spin flipping mechanisms.

Results of this project may open new ways to study quantum mechanics in it's simplest form.  From a more practical viewpoint, electrical switching of spins in nanocrystals and molecules can produce fast memory element of high capacity.  In the future, they may well be the preferred medium for storing classical or quantum information.
Results of this project may open new ways to study quantum mechanics in it's simplest form.  From a more practical viewpoint, electrical switching of spins in nanocrystals and molecules is a basic process that can produce fast memory element of high capacity.  They may well be the preferred store of either classical or quantum information in the future.


Direct link to Lay Summary Last update: 23.04.2014

Responsible applicant and co-applicants

Publications

Publication
Coherent manipulation of single electron spins with Landau-Zener sweeps
Rančić Marko, Stepanenko Dimitrije (2017), Coherent manipulation of single electron spins with Landau-Zener sweeps, in Physical Review B, 94, 241301.
Dielectric and ferroelectric properties of Ho-doped BiFeO3 nanopowders across the structural phase transition
Stojadinović Bojan, Dohčević-Mitrović Zorana, Stepanenko Dimitrije, Rosić Milena, Petronijević Milan, Tasić Nikola, Matović Branko, Stojanović Biljana (2017), Dielectric and ferroelectric properties of Ho-doped BiFeO3 nanopowders across the structural phase transition, in Ceramics International, 43, 16531.
Effective spin Hamiltonian of a gated triple quantum dot in the presence of spin–orbit interaction
Milivojević Marko, Stepanenko Dimitrije (2017), Effective spin Hamiltonian of a gated triple quantum dot in the presence of spin–orbit interaction, in Journal of Physics: Condensed Matter, 29, 405302.
Field-dependent superradiant quantum phase transition of molecular magnets in microwave cavities
Stepanenko Dimitrije, Trif Mircea, Tsyplyatyev Olexandr, Loss Daniel (2016), Field-dependent superradiant quantum phase transition of molecular magnets in microwave cavities, in Semiconductor Science and Technology, 31, 094003.
Variation of electric properties across the grain boundaries in BiFeO3 film
Stojadinović Bojan, Vasić Borislav, Stepanenko Dimitrije, Tadić Nenad, Gajić Radoš, Dohčević-Mitrović Zorana (2016), Variation of electric properties across the grain boundaries in BiFeO3 film, in Journal of Physics D: Applied Physics, 49(4), 045309-045309.

Collaboration

Group / person Country
Types of collaboration
Institute of Physics Belgrade Serbien (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
SFKM 2015 Talk given at a conference Spin-electric coupling in molecular magnets 07.09.2015 Belgrade, Serbien Stepanenko Dimitrije;
SpinTech VIII Poster Superradiant quantum phase transition with molecular magnets in a microwave cavity 10.08.2015 Basel, Switzerland Loss Daniel; Stepanenko Dimitrije;
Quantum Technology Meeting Talk given at a conference Spin-electric coupling and decoherence in triangular spin cluster qubits 12.01.2015 Manchester, Great Britain and Northern Ireland Loss Daniel; Stepanenko Dimitrije;
Seminar of the Laboratory for experimental psychology Individual talk Calssical and quantum information 19.06.2014 Belgrade, Serbien Stepanenko Dimitrije;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Fall physics seminar of the Petnica Science Center Talk 17.10.2015 Petnica, Serbien Stepanenko Dimitrije;
Seminar of the Laboratory for experimental psychology Talk 19.06.2014 Belgrade, Serbien Stepanenko Dimitrije;
Spring TEH seminar of the Petnica Science Center Workshop 19.05.2014 Petnica, Valjevo, Serbien Stepanenko Dimitrije;
Yearly lecture of Politehnika high school Performances, exhibitions (e.g. for education institutions) 16.05.2014 Belgrade, Serbien Stepanenko Dimitrije;


Abstract

The only direct way to access a single spin in nonrelativistic limit is through magnetic fields. Control of spins at the nanoscale by applying pulses of electric fields is a matter of compromise. Electric fields are easier to apply to small samples and quickly switch on and off than the magnetic fields. Unfortunately, the spins do not couple directly to electric fields in the nonrelativistic limit. The coupling is always indirect, and it strongly depends on the material that carries spins. In this project, we are going to study spin-electric coupling in two new classes of nanoscale systems; single-molecule magnets and nanocrystaline grains, and develop control scheme for triple quantum dot spin qubitsOur goal for single-molecule magnets is to find the spin-based degrees of freedom that couple to electric fields, find the molecules that show strong spin-electric coupling, and work on quantum optics of a set of such molecules in a resonant cavity. For nanocrystalline grains, we are going to search for spin textures in low-energy states and for a way to flip them by electric fields. Achieving this goal could enable electrically controlled magnetic memories. For triple quantum dots, we are going to study control in the presence of spin-orbit interaction, and see if this interaction can be used as a resource for control of spins.Scientific goals are discovery of molecular magnets with strong spin-electric coupling and theoretic description of applications that use such molecules. In the area of nanocrystals, the goal is to understand how strong internal electric fields modify their spin states, and search for a way to influence these spin states with external electric fields.The collaboration is going to benefit the recipient country through exchange of ideas and experience in collaborative work that involves scientists of various specialties. Collaboration will help the students to start their carriers with work on the most important topics of contemporary physics and introduce them to a broad scope of methods that study them.
-