Project

Back to overview

Quantum Entanglement in Nanoelectronic Devices by Noise Measurements

Applicant Schönenberger Christian
Number 150774
Funding scheme R'EQUIP
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.01.2014 - 31.12.2015
Approved amount 283'000.00
Show all

Keywords (1)

quantum electronics, quantum entanglement, noise

Lay Summary (German)

Lead
Tieftemperaturanlage zur Bestimmung von Quantenkorrelationen in elektrischen Signalen von Nanoelektronischen Komponenten.
Lay summary
Der Schweizerische Nationalfonds unterstützt mit diesem Projekt den Aufbau einer speziellen Messapparatur, welche der Analyse von elektrischen Signalen aus Nanoelektronischen Komponenten dient. Diese Komponenten werden bei tiefen Temperaturen betrieben, weil dann Quantenphänomene ungestört (resp. ungstörter) ablaufen können und man deshalb diese über längere Zeiten studieren kann. Da die zu erwartenden elektrischen Signal sehr klein sein werden, sollen in der Apparatur spezielle kryogene Verstärker eingesetzt werden, welche selbst nahe am Quantenlimit arbeiten. Das längerfristige Ziel wird es sein, Verschränkungen in elektronischen Komponenten zu studieren und zu manipulieren. Dies hat Implikationen für die Quanteninformationstechnologie.
Direct link to Lay Summary Last update: 03.01.2014

Responsible applicant and co-applicants

Publications

Publication
Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching
Hasler T., Jung M., Ranjan V., Puebla-Hellmann G., Wallraff A., Schoenenberger C. (2015), Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching, in PHYSICAL REVIEW APPLIED, 4(5), 054002.

Collaboration

Group / person Country
Types of collaboration
Prof. S. Csonka Hungary (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. A. Wallraff Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. K. Ensslin Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. T. Kontos France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. D. Zumbühl Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
30yr Quantronics Talk given at a conference Suspended ultraclean nanodevices coupled to superconducting impedance 22.06.2015 Paris, France Schönenberger Christian;


Associated projects

Number Title Start Funding scheme
172638 Quantentransport Phänomene in Nanodrähten 01.04.2017 Project funding (Div. I-III)
160152 Quantentransport Phänomene in Nanostrukturierten Devices 01.04.2015 Project funding (Div. I-III)
146139 Quantentransport Phänomene in Nanostrukturierten Devices 01.04.2013 Project funding (Div. I-III)

Abstract

One of the present day challenges in quantum electronics is to create entangled electron pairs with high efficiency and distribute the entanglement over long distances with high fidelity. Whereas schemes for the local generation of entangled electron pairs have been demonstrated, for example using Cooper-pairs or double quantum dots, the distribution remains a challenge. As compared to photons the distribution is much harder for electrons in the solid-state, because unlike photons the electrons in devices are strongly interacting and part of a many-body system, the Fermi sea. Until today, no transport experiment could demonstrate electron entanglement via a non-local measurement. Inspired by the Bell-test with photons, where coincident counts at two distant detectors are analyzed, theorists have proposed to use noise correlation experiments to mimic coincidence counts and to construct a Bell inequality. In a certain parameter range, a Bell-test based on shot-noise correlation is indeed possible. However, noise may be suppressed due to many-body screening effects. Due to the requirement to measure noise with a resolution of mK (milli-Kelvin) in devices with high impedances, typically larger than 100 kOhm, one has to measure at high frequencies in the 100 MHz to 10 GHz window to overcome spurious low frequency 1/f noise caused by the trapping and detrapping of charge in oxide layers. Cryogenic amplifiers have noise temperatures of a few Kelvins. One therefore has to average over a very long time to achieved the required accuracy. Here, we propose to build an unique cryogenic systems for noise-correlation experiments implementing parametric amplifiers which can operate at the quantum limit and dedicated impedance matching circuits. This will provide enough resolution to make possible the measurement of entanglement by non-local noise correlation experiments not only using second-order moments, but even higher ones.
-