Project

Back to overview

Functional active defects in condensed matter systems

English title Functional active defects in condensed matter systems
Applicant Fiebig Manfred
Number 150635
Funding scheme R'EQUIP
Research institution Departement Materialwissenschaft ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Condensed Matter Physics
Start/End 01.12.2013 - 30.11.2015
Approved amount 298'000.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Material Sciences

Keywords (6)

Defects; Ferroic; Oxides; Skyrmions; Domain walls; Scanning probe microscopy

Lay Summary (German)

Lead
Defekte in sonst perfekt geordneten Materialien können alles andere sein als nur ungewollte Fehlstellen. Ganz im Gegenteil können sie aufgrund ihrer Beschaffenheit und Grösse von oft nur wenigen Nanometern ganz besondere Eigenschaften hervorrufen, die das Material ansonsten nicht aufweist. Grenzflächen zwischen elektrisch geordneten Bereichen in Isolatoren können beispielsweise stark erhöhte Leitfähigkeit entwickeln und damit als Miniaturdrähte in zukünftigen Nano-Anwendungen dienen.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Das übergeordnete Ziel unseres Projektes ist es, neuartige Materialdefekte zu identifizieren, zu charakterisieren und ihre spezifische Bedeutung für zukunftsorientiere Technologien aufzuzeigen. Im Detail werden wir (i) magnetische Wirbel (Skyrmionen) und (ii) natürliche elektrische und magnetische Grenzflächen (Domänenwände) in Festkörpern untersuchen. Beide Arten von Defekten haben grösstes Potential als Informationsträger in Speichermedien, jedoch sind ihre physikalischen Eigenschaften bisher weitestgehend unerforscht.

 

Wissenschaftlicher und gesellschaftlicher Kontext

Unsere Arbeit wird neue und wichtige Einblicke in die Physik von Skyrmionen und Domänenwänden hervorbringen, sowie Chancen und Grenzen ihrer Nutzbarkeit für nanotechnologische Anwendungen aufweisen. Die Ergebnisse werden sowohl für die Wissenschaft als auch Informationsindustrie von grossem Interesse sein und die weitere Entwicklung in diesem Forschungsfeld massgeblich mitbestimmen.

Direct link to Lay Summary Last update: 19.12.2013

Responsible applicant and co-applicants

Publications

Publication
Contact-free mapping of electronic transport phenomena of polar domains in SrMnO3 thin films
Schaab Jakob (2016), Contact-free mapping of electronic transport phenomena of polar domains in SrMnO3 thin films, in 2016, 054009.
Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe
Schoenherr Peggy (2016), Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe, in Nature Commun., 12430.
Optimization of electronic domain-wall properties by aliovalent cation substitution
Schaab Jakob (2016), Optimization of electronic domain-wall properties by aliovalent cation substitution, in Adv. Electron. Mater., 1500195.
Robustness of magnetic and electric domains against charge carrier doping in multiferroic hexagonal ErMnO3
Hassanpour Ehsan (2016), Robustness of magnetic and electric domains against charge carrier doping in multiferroic hexagonal ErMnO3, in New J. Phys., 43015.
Growth of High-quality hexagonal ErMnO3 single-crystals by the pressurized floating-zone method
Yan Zewu (2015), Growth of High-quality hexagonal ErMnO3 single-crystals by the pressurized floating-zone method, in J. Cryst. Growth, 75.
Ferroelectric domains in the multiferroic phase of ErMnO3 imaged by low-temperature photoemission electron microscopy
Schaab Jakob (2014), Ferroelectric domains in the multiferroic phase of ErMnO3 imaged by low-temperature photoemission electron microscopy, in J. Phys.: Conf. Ser., 592.
Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy
Schaab Jakob (2014), Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy, in J. Appl. Phys., 232904.

Collaboration

Group / person Country
Types of collaboration
Dr. Andres Cano, ESRF Grenoble France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. David Muller, Cornell University United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Christian Degen, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Anders Bergman, University of Uppsala Sweden (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Yoshinori Tokura, Univ. Tokyo Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Ramamoorthy Ramesh, UC Berkeley United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. Nicola A. Spaldin, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Dr. Markus Garst, University of Cologne Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
International Conference on Magnetism Talk given at a conference Advanced characterization of helical spin structures and domains in Skyrmion systems 05.07.2015 Barcelona, Spain Fiebig Manfred;
German Physical Society Talk given at a conference Advanced characterization of helical spin structures and domains in Skyrmion systems 02.03.2015 Berlin, Germany Fiebig Manfred;


Associated projects

Number Title Start Funding scheme
149192 Functional active defects in condensed-matter systems 01.01.2014 Project funding (Div. I-III)

Abstract

A scanning-probe microscope (SPM) is an invaluable tool for non-destructive characterization of material properties with nanoscale resolution. Its basic principle is straightforward: A sharp tip with a curvature radius of a few nanometers interacts with the atoms on the surface of a material and, depending on the mode of operation, probes a variety of local properties. By scanning an area with the tip, spatial maps of these properties can be recorded. This goes way beyond scanning the surface topography in the atomic-force-microscope mode. For example, piezoresponse force microscopy was recently developed into a highly sensitive tool for measuring ferroelectric domain structures, and magnetic force microscopy probes ferromagnetism on the nanoscale. Because of this diversity of modes, a SPM is an ideal tool for investigating multifunctional material properties such as spatial magnetoelectric effects coupling magnetic and ferroelectric order on nano- to mesoscopic length scales. On the other hand, its local nature makes the SPM an ideal tool for probing local defects such as domain walls or magnetic singularities. A particular challenge to SPM is that many of the aforementioned multifunctionalities and defects occur at cryogenic temperatures. Therefore, ongoing efforts are made to adopt SPM technology to temperatures down to the (milli-) Kelvin range while keeping a reasonable scan range.With their project the main PI, Prof. Manfred Fiebig, and the co-PI, Dr. Dennis Meier, propose to merge all these capabilities of SPM into one custom-designed high-performance SPM station for probing functional defects in condensed-matter systems on nano- to mesoscopic length scales within a wide temperature range (1.8 to 300 K). The key idea is to focus on so-called "active defects", i.e., magnetic or electric defects that are not statically built into a condensed-matter environment but which can be moved or otherwise changed in both their position and properties. As described in the accompanying research proposal (No. 200021_149192, submitted on 31 March 2013) the PIs will at first focus on the investigation of two types of active defects of great current interest: (i) domain walls in multiferroics with improper ferroelectricity; (ii) topological magnetic vortices of spins, called skyrmions, in half-metals and insulators. These two types of defects are of the two- and one-dimensional type, respectively, and outstanding because of an intriguing interplay of magnetic and electric degrees of freedom inherent to them. The extraordinary potential of domain walls and skyrmions as active low-dimensional building blocks for nano-electronics has been realized so very recently that their understanding is still at a fragmentary level. The PIs will now apply a unique combination of state-of-the-art low-temperature SPM techniques for gaining a comprehensive picture of magnetic and electric defect properties at the level of the inherent length scale of these low-dimensional objects (~20 nm) and their spatial arrangement (~100 µm). As long-term perspective other functional defects will be included in the SPM investigation which will finally lead to a fundamental understanding of the complex correlation physics associated to active defects in general.The main features of the low-temperature SPM designed to study active-defect properties and phenomena are: (i) CCD-based in-situ inspection optics, (ii) an explicitly large scan range of 150 µm x 150 µm at low temperature (largest available scan range), and (iii) a magnetic field of >10 T that can be oriented fully three-dimensionally. The extraordinary large scanning range and the high magnetic vector field as well as the combination of all the SPM operation modes into one device are, to our knowledge, world-wide unique, partly also because some of the features of the SPM became technologically realizable only very recently. Because of this, the low-temperature SPM will be a valuable complement to the research on functional nanomaterials at ETH Zurich and in Switzerland.
-