Projekt

Zurück zur Übersicht

N2O from the Swiss midlands - regional sources and hot spots

Titel Englisch N2O from the Swiss midlands - regional sources and hot spots
Gesuchsteller/in Mohn Joachim
Nummer 150237
Förderungsinstrument Projektförderung (Abt. I-III)
Forschungseinrichtung Luftfremdstoffe / Umwelttechnik EMPA
Hochschule Eidg. Materialprüfungs- und Forschungsanstalt - EMPA
Hauptdisziplin Klimatologie, Atmosphärenphysik, Aeronomie
Beginn/Ende 01.06.2014 - 31.05.2017
Bewilligter Betrag 285'418.00
Alle Daten anzeigen

Alle Disziplinen (3)

Disziplin
Klimatologie, Atmosphärenphysik, Aeronomie
Geochemie
Andere Gebiete der Umweltwissenschaften

Keywords (5)

greenhouse gas; Lagrangian particle dispersion model; process based biogeochemical model; stable isotope; nitrous oxide (N2O)

Lay Summary (Deutsch)

Lead
Lachgas (N2O) ist ein wichtiges Treibhausgas und wesentlich am Abbau der Ozonschicht beteiligt. Seine Konzentration in der Atmosphäre hat in den letzten Jahrzehnten vor allem durch eine vermehrte Freisetzung aus Stickstoff-gedüngten landwirtschaftlichen Böden zugenommen. Für ein besseres Verständnis und eine präzisere Quantifizierung der Lachgasbildung in Böden müssen die beteiligten mikrobiellen Bildungsprozesse identifiziert und deren räumliche sowie zeitliche Variation untersucht werden.
Lay summary

In dem vorliegenden Projekt wird ein neuartiger Ansatz verwendet, um N2O Bildungsprozesse und Quellregionen im Schweizer Mittelland besser verstehen zu können. Hierfür werden einerseits erstmalig kontinuierliche atmosphärische N2O Isotopenmessungen auf einem Messturm (Beromünster) durchgeführt, mit deren Hilfe es möglich ist, den Beitrag der verschiedenen mikrobieller Stoffwechselwege (insbesondere Nitrifikation und Denitrifikation) zu bestimmen (WP 1). Andererseits wird ein biogeochemisches Bodenmodell auf der Basis von LandscapeDNDC entwickelt, welches es erlaubt die N2O Freisetzung und deren Isotopenzusammensetzung in der Quellregion des Messturms in einem „bottom up Ansatz“ zu simulieren (WP 2). Anschliessend wird eine Validierung des Bodenmodells mit Hilfe der kontinuierlichen N2O Isotopenmessungen und eines Lagrangen Transportmodells (FLEXPART-COSMO) sowie eines Inversionssystems in einem „top down Ansatz“ durchgeführt (WP 3). Hierbei werden N2O Quellregion, Emissionsstärke und Isotopensignatur bestimmt und mit den Vorhersagen des Bodenmodells verglichen.

Direktlink auf Lay Summary Letzte Aktualisierung: 09.01.2014

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
Prof. Dr. Markus Leuenberger / Universität Bern Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Forschungsinfrastrukturen
Prof Dr. Peter Smith / University of Aberdeen Grossbritannien und Nordirland (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
Dr. Willi A. Brand / MPI Jena Deutschland (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
Prof. Naohiro Yoshida / Tokyo Tech Japan (Asien)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
Prof. Dr. Nicolas Brüggemann / FZ Jülich Deutschland (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
Dr. Pirmin Kaufmann / MeteoSchweiz Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Forschungsinfrastrukturen

Auszeichnungen

Titel Jahr
Selected for EOS Research Highlight https://eos.org/research-spotlights/new-technique-could-help-scientists-track-nitrous-oxide-sources 2017

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
136273 CarboCount CH: Quantifying greenhouse gas fluxes and their sensitivity to climate variations: A case study in Central Europe and Switzerland 01.01.2012 Sinergia
170876 Advanced understanding of autotrophic nitrogen removal and associated N2O emissions in mixed nitritation-anammox systems through combined stable ISOtopic and MOLecular constraints (ISOMOL) 01.09.2017 Sinergia
134611 Entwicklung eines Quantenkaskadenlaser Spektrometers zur kontinuierlichen Bestimmung von Methan Isotopen 01.01.2012 Projektförderung (Abt. I-III)
125336 Kontinuierliche Bestimmung von N2O Isotopomeren in Umgebungsluft mittels Quantenkaskadenlaser-Absorptionspektrometrie 01.11.2009 Projektförderung (Abt. I-III)
163075 Assessment of the global N2O budget based on seasonal and long-term isotope measurements at Jungfraujoch and the Cape Grim Air Archive 01.12.2016 Projektförderung (Abt. I-III)
172585 N2O from the Swiss midlands - regional sources and hot spots - 18 month extension 01.06.2017 Projektförderung (Abt. I-III)
166255 Clumped isotopes as a novel tracer for the N2O cycle 01.09.2016 Projektförderung (Abt. I-III)

Abstract

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and an important anthropogenic contributor to stratospheric ozone-depletion. Its atmospheric abundance increased significantly in recent decades due to the perturbation of the nitrogen cycle mainly by growing usage of mineral fertilizers and enhanced microbial production in soils. Hence, detailed knowledge of the tempo-spatial variations of N2O emissions from soils is fundamental for developing targeted mitigation strategies. Process-oriented biogeochemical soil models are increasingly used to assess N2O budgets. Their validation strategies usually aim at minimizing the error for total N2O emissions at site scale. Hence, it remains unclear if the partitioning between specific microbial processes is adequately represented in these models and if their application at larger scales is reliable. Microbial source processes of N2O, specifically between nitrification and/ or denitrification, exhibit characteristic isotopic signatures that can be used to quantify individual N2O sources. Atmospheric measurements of N2O isotopic composition may provide invaluable information for verification of individual pathways in biogeochemical models. However, up to now such measurements have been scarce and limited to low-frequency flask sampling in combination with laboratory-based mass spectrometric analysis.This project will, for the first time, conduct real-time, quasi-continuous measurements of N2O concentrations and site-specific isotopic composition at a tall tower (Beromünster), located in a rural environment on the Swiss plateau. In a “top-down” approach, using these measurements, backward Lagrangian particle dispersion modeling (FLEXPART-COSMO), and an inversion system, the source strengths of total N2O and its isotopic signatures in northern Switzerland will be determined. In a complementary “bottom-up” approach, a state of the art biogeochemical model (LandscapeDNDC) will be extended with a sub-module capable of simulating isotopic signatures of N2O emitted from soils. The model extension will be based on enrichment factors for the relevant ecosystem processes and will reflect process-specific isotopic site preferences of produced and emitted N2O. The extended LandscapeDNDC model in combination with detailed geospatial information on soil, vegetation and management will finally be used to assess site, field and regional-scale patterns of soil N2O emissions. The backward Lagrangian transport simulations will provide the link between these bottom-up estimates and the tall tower measurements and will allow checking for consistency between biogeochemistry modeling and observations and identifying weaknesses in our current understanding of the underlying processes.
-