Project

Back to overview

Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR)

English title Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR)
Applicant Fonti Patrick
Number 150205
Funding scheme Project funding (Div. I-III)
Research institution Swiss Federal Research Inst. WSL Direktion
Institution of higher education Swiss Federal Institute for Forest, Snow and Landscape Research - WSL
Main discipline Other disciplines of Environmental Sciences
Start/End 01.06.2014 - 31.05.2018
Approved amount 231'360.00
Show all

All Disciplines (4)

Discipline
Other disciplines of Environmental Sciences
Ecology
Agricultural and Forestry Sciences
Environmental Research

Keywords (8)

elevation/temperature gradient; dendrometer; tree modelling; tree-ring; sap flow; xylogenesis; stem water and carbon cycles; xylem anatomy

Lay Summary (German)

Lead
Titel: Beziehung zwischen Wasserfluss im Stamm und Kohlenstoffallokation in Wachstum bei zunehmender Klimaerwärmung: das Fallbeispiel LötschentalBäume brauchen Wasser nicht nur um Photosynthese zu betreiben - also um Kohlenstoffdioxid mittels Sonnenenergie in Zucker für den Kreislauf und die Zellproduktion umzuwandeln - sondern auch um den Innendruck für die Expansion von Wasserleitenden Zellen aufzubauen und damit deren Funktionalität zu bestimmen. Obwohl die Klimaerwärmung die Bedeutung des Wassers für Bäume bekanntlich verschärfen wird, weiss man wenig darüber, wie ein geringerer Wasserfluss durch den Stamm die Investition von Kohlenstoff in Wachstum und Jahrringbildung beeinflusst.
Lay summary
Das Hauptziel des Projektes ist die Verbesserung des mechanistischen Verständnisses davon, wie Wasser- und Kohlenstoffkreisläufe im Stamm von Nadelbäumen gekoppelt sind und wie diese Kopplung mit der globalen Erwärmung interagieren könnte. Durch die Analyse hochaufgelöster Beobachtungsdaten entlang von Höhen- und Temperaturgradienten im Lötschental werden wir (i) die Beziehung zwischen Wasserfluss im Stamm und bedeutender Klimafaktoren, und (ii) die damit verbundene Biomasse-Akkumulation im Stamm über die Zeit hinweg quantifizieren. Beide Quantifizierungen werden in ein bestehendes Modell einfliessen, welches Wasser- und Zuckertransport in Bäumen verknüpft. Damit soll (iii) erhellt werden, wie tägliche und jährliche Kohlenstoffinvestitionen im sich bildenden Jahrring durch die Menge des durch den Stamm fliessenden Wassers beeinflusst wird.

Unser Projekt wird das mechanistisches Verständnis der umweltbedingten und physiologischen Engpässe der Holzproduktion bei Nadelbäumen sowie deren Einfluss auf den Wasser- und Kohlenstoffhaushalt auf intra-annueller und zellulärer Ebene verbessern. Die Resultate werden insbesondere eine realistische Einschätzung des wasserlimitierten Baumwachstums in Bezug auf die Klimaerwärmung erbringen.

Direct link to Lay Summary Last update: 11.05.2014

Lay Summary (Italian)

Lead
Titolo: Interdipendenza tra flusso xilematico e ripartizione di carbonio in un clima riscaldato: lo studio di caso del LötschentalGli alberi non solo necessitano acqua per fare la fotosintesi ? cioè quel processo per il quale la luce solare converte il diossido di carbonio (CO2) in riserve di energia e zucchero ? ma anche per generare il turgore necessario alle cellule conduttrici di acqua del legno per espandersi and prendere forma, determinando così la loro funzionalità idrica. Ciononostante, sebbene sia ben chiaro che il riscaldamento climatico intensificherà il ruolo dell’acqua per la vita delle piante, ancora poco si sa su come una riduzione del flusso xilematico possa influenzare la quantità e ripartizione del carbonio strutturale, e la funzionalità dell’anello in formazione.
Lay summary

L’obbiettivo di questo progetto è di migliorare la comprensione meccanicistica di come il ciclo dell’acqua e quello del carbonio nel tronco delle conifere sono interdipendenti tra loro e essere alterati in un scenario di riscaldamento climatico. In particolare, analizzando osservazioni effettuate lungo un gradiente altitudinale nel Lötschental, quantificheremo (i) la relazione tra flusso xilematico e i principali fattori climatici, e (ii) il corrispondente accumulo di biomassa. Entrambe le quantificazioni verranno immesse in un modello che mette in relazione trasporto d’acqua e zuccheri per (iii) delucidare come la ripartizione giornaliera o annuale di carbonio strutturale nell’anello in formazione è influenzata dal flusso xilematico.

Questo lavoro contribuirà a una migliorata comprensione meccanicistica dei limiti ambientali e fisiologici della formazione del legno come pure del suo impatto sul ciclo dell’acqua e del carbonio su scala intra-annuale e cellulare. In particolare i risultati serviranno a fornire un riferimento della risposta della crescita in condizioni di approvvigionamento idrico limitato

Direct link to Lay Summary Last update: 11.05.2014

Lay Summary (English)

Lead
Trees need water not only to perform photosynthesis ? i.e., the process that uses light to convert carbon dioxide (CO2) into sugar for food and cells production ? but also for the necessary turgor for wooden water-conducting cells to expand and shape, which determine their functioning. Although it is well known that a warming climate will exacerbate the role of water for tree life, still very little is known about how a reduction of water flowing through the stem affects the quantity, the allocation of structural carbon, and the functioning of the forming annual ring.
Lay summary

The main aim of the project is to improve our mechanistic understanding on how the water and carbon cycles in the stems of conifer trees are coupled and might interact in global warming scenarios. In particular, by analyzing high resolution observations along an elevation/temperature gradient in the Lötschental, we will quantify (i) the relation between stem water flow and the major climatic drivers, and (ii) the correspondent stem biomass accumulation over time. Both quantification will feed an existing model linking water and sugar transport in living trees (iii) to elucidate how daily to annual structural carbon allocation in the forming ring is affected by the amount of water flowing through the stem.

Our work will provide a better mechanistic understanding of the environmental and physiological constraints of conifer wood formation and their impact on the trees’ water and carbon cycle at intra-annual and cellular scales. Results will in particular provide a realistic benchmark for water-limited tree growth responses in a warming climate.

Direct link to Lay Summary Last update: 11.05.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method
Peters Richard L., Fonti Patrick, Frank David C., Poyatos Rafael, Pappas Christoforos, Kahmen Ansgar, Carraro Vinicio, Prendin Angela Luisa, Schneider Loïc, Baltzer Jennifer L., Baron-Gafford Greg A., Dietrich Lars, Heinrich Ingo, Minor Rebecca L., Sonnentag Oliver, Matheny Ashley M., Wightman Maxwell G., Steppe Kathy (2018), Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method, in New Phytologist, 219(4), 1283-1299.
Modeled Tracheidograms Disclose Drought Influence on Pinus sylvestris Tree-Rings Structure From Siberian Forest-Steppe
Popkova Margarita I., Vaganov Eugene A., Shishov Vladimir V., Babushkina Elena A., Rossi Sergio, Fonti Marina V., Fonti Patrick (2018), Modeled Tracheidograms Disclose Drought Influence on Pinus sylvestris Tree-Rings Structure From Siberian Forest-Steppe, in Frontiers in Plant Science, 9, 1144.
Transpiration, Tracheids and Tree rings: Linking stem water flow and wood formation in high-elevation conifers
Peters Richard, Transpiration, Tracheids and Tree rings: Linking stem water flow and wood formation in high-elevation conifers, Thesis at the University of Basel, Basel.

Collaboration

Group / person Country
Types of collaboration
Laboratory of Plant Ecology at Ghent University Belgium (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Department of Environmental Sciences – Institute of Botany University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
2018 ESA Annual Meeting Talk given at a conference The power of turgor pressure in explaining conifer wood formation dynamics 07.07.2018 New Orleans, United States of America Peters Richard L.;
TRACE 2017 Talk given at a conference Wood anatomical proxies from lowland European oak and Scots pine for climate reconstructions 16.06.2017 Kaliningrad, Russia Peters Richard L.;
TRACE 2017 Poster Climate response of Scots pine tracheid cells across the European-Eurasian maritime-continental climate gradient 16.05.2017 Kaliningrad, Russia Peters Richard L.;
TRACE 2017 Poster Tracheid anatomical changes of Larix sibirica under drought stress 16.05.2017 Kaliningrad, Russia Fonti Patrick;
EGU Talk given at a conference How to make a tree ring: Coupling stem water flow and cambial activity in mature Alpine conifers 23.04.2017 Wien, Austria Peters Richard L.; Treydte Kerstin;
TRACE 2016 Poster Assessing the impact of larch budmoth outbreaks on tree biomass growth along an Alpine elevational gradient 11.05.2016 Białowieża, Poland Peters Richard L.;
EuroDendro 2014 Poster Coupling stem water flow and structural carbon dynamics. 08.09.2014 Lugo, Spain Peters Richard L.;


Self-organised

Title Date Place
Course in Method of quantitative and functional wood anatomy 16.05.2016 Kaliningrad, Russia

Associated projects

Number Title Start Funding scheme
160077 Unraveling the influence of climate change on wood formation and resulting tree rings (CLIMWOOD) 01.09.2015 Project funding (Div. I-III)
130112 Isotope pathway from atmosphere to the tree ring along a humidity gradient in Switzerland 01.09.2010 Project funding (Div. I-III)
121859 INtra-seasonal Tree growth along Elevational GRAdients in the European ALps (INTEGRAL) 01.03.2009 Project funding (Div. I-III)
154157 TreePulse - Water use strategies of Australian tree species to survive drought - a pulse labelling experiment with isotope tracers 01.02.2014 International short research visits
175888 Disentangling source water and leaf water signals in highly resolved oxygen isotope data from tree rings 01.05.2018 Project funding (Div. I-III)

Abstract

Photosynthesis represents the process where the water cycle meets the carbon cycle. For each kilogram of carbon allocated, a plant transpires between 100 and 1000 kilograms of water. Yet, these quantifications are strongly influenced by the environmental setting and species which play key roles in determining interactions between the water and carbon balance from single plants to the land-atmosphere fluxes across the Earth. LOTFOR aims at elucidating the coupling between the carbon and hydrological cycle in the context of increasing temperature by quantifying water flow and growth processes occurring in the stem of conifer trees. We will cajavascript:__doPostBack('ctl00$ctl00$CPH_Content$CPH_Content$ctl04$LSV2$DCTN$LB_Submit','')pitalize upon a unique research setting located along a temperature (altitudinal) gradient and additionally perform investigations at contrasting wet and dry sites. Data collected in this project on plant-water relations (sap flow and stem diameter variation, soil, xylem and leaf water oxygen isotopes) will complement multi-annual high resolution measurements of tree growth (e.g., weekly xylogenesis observation, hourly stem size variation, tree-ring width and cell anatomy and density profiles) as indicators for structural carbon allocation to provide a comprehensive framework to link variability in the carbon and hydrological cycles. By quantifying transpiration and its variation in relation to the major climatic drivers (Module A) and stem biomass accumulation over time (Module B) we will be able to improve our process-based understanding of how daily to annual structural carbon allocation (amount and shape of tracheids) in the forming ring is linked with the water flowing through the stem (Module C). Based on such relationships we will improve an existing tree model (De Schepper & Steppe, 2010) linking water and sugar transport in living trees. The refined model will serve as a basis to link past climatic, tree-ring width and isotope data, and will be used for predictions of forest responses under a warming climate. The detailed quantification of the water-carbon relationships are the basis for a better process-based understanding of how these factors interact in shaping annual tree-ring structures and production in conifers.
-