Project

Back to overview

Optogenetic control of receptor tyrosine kinase signaling to manipulate cell fate

Applicant Pertz Olivier
Number 149923
Funding scheme Project funding (Div. I-III)
Research institution Departement Biomedizin Universität Basel
Institution of higher education University of Basel - BS
Main discipline Cellular Biology, Cytology
Start/End 01.02.2014 - 31.01.2016
Approved amount 263'911.00
Show all

Keywords (6)

Live cell imaging; Optogenetics; neuronal differentiation; Receptor Tyrosine Kinase signaling; MAPK signaling; Synthetic biology

Lay Summary (French)

Lead
Controle optogenetique de voies de signalisation pour influencer la differentiation cellulaire
Lay summary

La proliferation ou la differentiation cellulaire sont le resultat de decisions cellulaires qui dependent de voies de signalisation complexes et dynamiques. Par example, l'application des facteurs de croissance EGF ou NGF, induisent des voies de signalisation specifiques en reponse a l'activation de different recepteurs et peuvent induire specifiquement proliferation ou differentiation. Une characteristique importante de ce systeme de signalisation cellulaire et que les deux facteurs de croissance induisent deux dynamiques temporelles distinctes de l'activation d'une molecule de signalisation: la MAP kinase ERK.

 

Le but de ce projet est de construire un recepteur chimerique qui ne necessite pas d'activation par liaison de son facteur de croissance, mais peut etre active par simple application de lumiere. Cette approche permettra un controle extremement precis de l'activation de ce recepteur chimerique, et de la dynamique temporelle de l'activation de la MAP kinase. Le but ultime de ce projet est de pouvoir controller des decisions cellulaires tel que la proliferation ou la differentiation par simple activation du recepteur chimerique par application de lumiere. Dans le futur, cette approche a le potentiel de permettre un controle fin de la differentiation de cellules souche par exemple, avec des implication biotechnologiques et medicales importantes.

 

Direct link to Lay Summary Last update: 26.09.2013

Responsible applicant and co-applicants

Employees

Collaboration

Group / person Country
Types of collaboration
Seoul National University Korean Republic (South Korea) (Asia)
- in-depth/constructive exchanges on approaches, methods or results
D-BSSE / ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Associated projects

Number Title Start Funding scheme
185376 Decoding and Re-Encoding Receptor Tyrosine Kinase/Fate Decision Signaling 01.06.2019 Project funding (Div. I-III)
162195 Understanding single cell-level MAPK activation dynamics for manipulation of neuronal stem cell self-renewal and differentiation fates 01.03.2016 Bilateral programmes
185376 Decoding and Re-Encoding Receptor Tyrosine Kinase/Fate Decision Signaling 01.06.2019 Project funding (Div. I-III)
139201 Spatio-temporal Rho GTPase signaling mechanisms during cell migration 01.12.2011 SNSF Professorships
163061 Mapping Rho GTPase signaling networks through acute, dynamic stimulation of spatio-temporal signaling fluxes. 01.04.2016 Project funding (Div. I-III)

Abstract

Receptor Tyrosine kinases (RTKs) such as the ErbB1 epidermal (EGF) and nerve (NGF) growth factor receptors can control a number of cellular fates that include growth, survival, motility, proliferation and differentiation. Upon binding to a cognate ligand, these RTKs dimerize, autophosphorylate and trigger multiple downstream signaling networks including activation of the MAP kinase ERK. An emerging theme is that duration of ERK signaling can specify cell fate. Thus, in PC-12 cells, EGF triggers transient ERK activation and proliferation, whereas NGF triggers sustained ERK activation and differentiation (e.g. cells get quiescent and extend neurites). Using a genetically-encoded FRET-based biosensor that reports on ERK activation in single living cells, we observed that EGF and NGF-evoked ERK activation profiles are highly variable among different cells within a population. By example, NGF only triggers sustained ERK activation in a subpopulation of cells (the remainder exhibiting transient responses), which explains why not all cells of the population differentiate when stimulated with NGF. This feature is commonly referred to as stochastic noise by the stem cell differentiation community. Using microfluidic technology to deliver successive growth factor pulses to cells, we are able to robustly reactivate multiple successive transient peaks of ERK activity among all cells of a population, thereby mimicking sustained ERK activation. This allows rewiring of cell fate (e.g. multiple pulses of the growth factor EGF lead to differentiation rather than proliferation. This also allows synchronization of cell fate, yielding homogeneous differentiation across the cell population. Thus, manipulating ERK activation dynamics allows to bypass growth factor-induced noisy cell behaviors for robust rewiring and synchronization of cell fate.The purpose of this grant proposal is to construct an optogenetic probe that allows light control of ErbB1 receptor activation to manipulate ERK activation dynamics with high temporal resolution. This will take advantage of different light-inducible protein dimerization domains that will be fused to the ErbB1 intracellular tail to control its autophosphorylation. We will then use kinetically-defined light regimens to control the temporal dynamics of ErbB1 activation to evoke synthetic ERK activation regimes. Ultimately, this will be used to control cell fate. The approach has the potential to allow robust cell fate determination in large population of cells, which is currently not feasible with microfluidic approaches. Being able to robustly trigger specific cell fates in large population of cells has important consequences for stem cell and systems biology.
-