Project

Back to overview

High resolution spectroscopy of strongly correlated electron systems and artificial structures at surfaces

Applicant Grioni Marco
Number 149651
Funding scheme Project funding (Div. I-III)
Research institution Institut de Physique des Nanostructures EPFL - FSB - IPN
Institution of higher education EPF Lausanne - EPFL
Main discipline Condensed Matter Physics
Start/End 01.10.2013 - 30.09.2015
Approved amount 500'000.00
Show all

Keywords (6)

ARPES; low-dimensional; strong correlations; electronic properties; new materials; quantum matter

Lay Summary (Italian)

Lead
Ci proponiamo di utilizzare due tecniche spettroscopiche avanzate -- la fotoemissione (ARPES) e lo scattering risonante inelastico di raggi X (RIXS) -- per studiare le proprietà elettroniche di varie famiglie di nuovi materiali. Tra questi, metalli non convenzionali e a bassa dimensionalità, superconduttori e sistemi con proprietà magnetiche inusuali. Questi materiali sono interessanti per ragioni fondamentali, ma anche in vista di future applicazioni pratiche.
Lay summary

Questo progetto si propone lo studio della struttura electtronica di varie forme di “materiali quantistici”, cioè di sistemi in cui gli effetti quantistici, al di là dell'immagine usuale di particelle indipendenti, determinano proprietà fisiche nuove e inattese. Di questa classe di materiali fanno parte ad esempio gli isolanti topologici, i sistemi magnetici di tipo “Rashba”, materiali a forti correlazioni elettroniche quali alcuni composti dei metalli di transizione e delle terre rare, e materiali in cui gli elettroni interagiscono fortemente con il reticolo degli ioni. Particolare enfasi sarà data allo studio di materiali a bassa dimensionalità, che spesso conducono alla formazione di nuove fasi ordinate, quali onde di densità di carica o di spin, o fasi isolanti di Mott.

Questo studio sarà effettuato utilizzando principalmente la fotoemissione (ARPES) ad alta risoluzione. La ricerca sarà condotta in parte all'EPFL, dove disponiamo di uno spettrometro con caratteristiche avanzate.  Per altri esperimenti di ARPES utilizzeremo la luce di sincrotrone, che offre notevoli vantaggi in termini de polarizzazione e accordabilità. La luce di sincrotrone sarà usata anche in misure assorbimento (XAS) e di diffusione risonante (RIXS) di raggi X, in grado di fornire informazioni complementari sulla struttura elettronica.

L'obiettivo di questa ricerca è una migliore conoscenza delle proprietà microscopiche dei materiali quantistici, necessaria per comprendere come proprietà fisiche nuove e potenzialmente utili possano emergere dalle interazioni fondamentali. Una tale comprensione è indispensabile per poter progettare nuovi materiali in grado di realizzare specifiche funzioni.

 

 

 


Direct link to Lay Summary Last update: 27.09.2013

Lay Summary (English)

Lead
We will use two advanced spectroscopic tools -- angle resolved photoelectron spectroscopy (ARPES) and resonant inelastic x-ray scattering (RIXS) -- to study the electronic properties of various classes of new materials such as low-dimensional and unconventional conductors and superconductors and systems with unusual magnetic properties. These materials are of interest for fundamental reasons and also as possible building blocks for future practical applications.
Lay summary

With this research project we address the electronic structure of various forms of quantum matter, i.e. of systems where quantum effects, beyond the usual independent particle picture, determine new and unconventional physical properties. They include novel electronic materials such as topological insulators and Rashba systems, strongly correlated materials such as transition metal or lanthanide compounds, and materials characterized  by a strong coupling between the electrons and the lattice. We put special emphasis on the study of materials with reduced dimensionality, which are especially prone to develop instabilities to interesting broken-symmetry phases, e.g. charge or spin-density-waves, or Mott insulating phases.

We investigate these systems by high energy spectroscopies, primarily angle-resolved photoelectron spectroscopy (ARPES) with high energy and momentum resolution. Part of our research will be performed at EPFL, exploiting our state-of-the-art electron spectrometer. We will also perform, at various laboratories worlwide, ARPES experiments with synchrotron radiation, which offers notable advantages in terms of energy tunability and polarization control. At synchrotron radiation facilities we also perform experiments with different spectroscopic techniques, namely x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS), that provide complementary information on the electronic structure of materials.

Our goal is to gain a deeper understanding of the microscopic properties of these quantum materials, which will help elucidate the emergence of new, exciting and potentially useful properties, out of the underlying fundamental interactions. Such understanding is crucial to design and develop new materials which realize specific functions.

Direct link to Lay Summary Last update: 27.09.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Composition and temperature dependence of the Yb valence in YbMn6Ge6-xSnx studied by RIXS
Mazet T., Malterre D., Francois M., Eichenberger L., Grioni M., Dallera C., Monaco G. (2015), Composition and temperature dependence of the Yb valence in YbMn6Ge6-xSnx studied by RIXS, in PHYSICAL REVIEW B, 92(7), 075105.
Electron-Phonon Coupling in the Bulk of Anatase TiO2 Measured by Resonant Inelastic X-Ray Spectroscopy
Moser S., Fatale S., Krueger P., Berger H., Bugnon P., Magrez A., Niwa H., Miyawaki J., Harada Y., Grioni M. (2015), Electron-Phonon Coupling in the Bulk of Anatase TiO2 Measured by Resonant Inelastic X-Ray Spectroscopy, in PHYSICAL REVIEW LETTERS, 115(9), 096404.
Engineering the topological surface states in the (Sb-2)(m)-Sb2Te3 (m=0-3) superlattice series
Johannsen J. C., Autes G., Crepaldi A., Moser S., Casarin B., Cilento F., Zacchigna M., Berger H., Magrez A., Bugnon Ph., Avila J., Asensio M. C., Parmigiani F., Yazyev O. V., Grioni M. (2015), Engineering the topological surface states in the (Sb-2)(m)-Sb2Te3 (m=0-3) superlattice series, in PHYSICAL REVIEW B, 91(20), 201101.
Momentum-Resolved Spin Dynamics of Bulk and Surface Excited States in the Topological Insulator Bi2Se3
Cacho C., Crepaldi A., Battiato M., Braun J., Cilento F., Zacchigna M., Richter M. C., Heckmann O., Springate E., Liu Y., Dhesi S. S., Berger H., Bugnon Ph., Held K., Grioni M., Ebert H., Hricovini K., Minar J., Parmigiani F. (2015), Momentum-Resolved Spin Dynamics of Bulk and Surface Excited States in the Topological Insulator Bi2Se3, in PHYSICAL REVIEW LETTERS, 114(9), 097401.
Ramifications of optical pumping on the interpretation of time-resolved photoemission experiments on graphene
Ulstrup Soren, Johannsen Jens Christian, Cilento Federico, Crepaldi Alberto, Miwa Jill A., Zacchigna Michele, Cacho Cephise, Chapman Richard T., Springate Emma, Fromm Felix, Raidel Christian, Seyller Thomas, King Phil D. C., Parmigiani Fulvio, Grioni Marco, Hofmann Philip (2015), Ramifications of optical pumping on the interpretation of time-resolved photoemission experiments on graphene, in JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 200, 340-346.
Spin-orbit-induced orbital excitations in Sr2RuO4 and Ca2RuO4: A resonant inelastic x-ray scattering study
Fatuzzo C. G., Dantz M., Fatale S., Olalde-Velasco P., Shaik N. E., Piazza B. Dalla, Toth S., Pelliciari J., Fittipaldi R., Vecchione A., Kikugawa N., Brooks J. S., Ronnow H. M., Grioni M., Rueegg Ch., Schmitt T., Chang J. (2015), Spin-orbit-induced orbital excitations in Sr2RuO4 and Ca2RuO4: A resonant inelastic x-ray scattering study, in PHYSICAL REVIEW B, 91(15), 155104.
Spin-orbit-induced orbital excitations in Sr2RuO4 and Ca2RuO4: A resonant inelastic x-ray scattering study (vol 91, 155104, 2015)
Fatuzzo C. G., Dantz M., Fatale S., Olalde-Velasco P., Shaik N. E., Dalla Piazza B., Toth S., Pelliciari J., Fittipaldi R., Vecchione A., Kikugawa N., Brooks J. S., Ronnow H. M., Grioni M., Rueegg Ch., Schmitt T., Chang J. (2015), Spin-orbit-induced orbital excitations in Sr2RuO4 and Ca2RuO4: A resonant inelastic x-ray scattering study (vol 91, 155104, 2015), in PHYSICAL REVIEW B, 91(19), 199904.
Tunable Carrier Multiplication and Cooling in Graphene
Johannsen Jens Christian, Ulstrup Soren, Crepaldi Alberto, Cilento Federico, Zacchigna Michele, Miwa Jill A., Cacho Cephise, Chapman Richard T., Springate Emma, Fromm Felix, Raidel Christian, Seyller Thomas, King Phil D. C., Parmigiani Fulvio, Grioni Marco, Hofmann Philip (2015), Tunable Carrier Multiplication and Cooling in Graphene, in NANO LETTERS, 15(1), 326-331.
Ultrafast electron dynamics in epitaxial graphene investigated with time- and angle-resolved photoemission spectroscopy
Ulstrup Soren, Johannsen Jens Christian, Crepaldi Alberto, Cilento Federico, Zacchigna Michele, Cacho Cephise, Chapman Richard T., Springate Emma, Fromm Felix, Raidel Christian, Seyller Thomas, Parmigiani Fulvio, Grioni Marco, Hofmann Philip (2015), Ultrafast electron dynamics in epitaxial graphene investigated with time- and angle-resolved photoemission spectroscopy, in JOURNAL OF PHYSICS-CONDENSED MATTER, 27(16), 164206.
Angle-Resolved Photoemission Spectroscopy of Tetragonal CuO: Evidence for Intralayer Coupling Between Cupratelike Sublattices
Moser S., Moreschini L., Yang H. -Y., Innocenti D., Fuchs F., Hansen N. H., Chang Y. J., Kim K. S., Walter A. L., Bostwick A., Rotenberg E., Mila F., Grioni M. (2014), Angle-Resolved Photoemission Spectroscopy of Tetragonal CuO: Evidence for Intralayer Coupling Between Cupratelike Sublattices, in PHYSICAL REVIEW LETTERS, 113(18), 187001.
Anisotropic softening of magnetic excitations along the nodal direction in superconducting cuprates
Guarise M., Dalla Piazza B., Berger H., Giannini E., Schmitt T., Ronnow H. M., Sawatzky G. A., van den Brink J., Altenfeld D., Eremin I., Grioni M. (2014), Anisotropic softening of magnetic excitations along the nodal direction in superconducting cuprates, in NATURE COMMUNICATIONS, 5, 6760.
Atomic and electronic structure of a Rashba p-n junction at the BiTeI surface
Tournier-Colletta C., Autes G., Kierren B., Bugnon Ph., Berger H., Fagot-Revurat Y., Yazyev O. V., Grioni M., Malterre D. (2014), Atomic and electronic structure of a Rashba p-n junction at the BiTeI surface, in PHYSICAL REVIEW B, 89(8), 085402.
Bilayer splitting and wave functions symmetry in Sr3Ir2O7
Moreschini L., Moser S., Ebrahimi A., Dalla Piazza B., Kim K. S., Boseggia S., McMorrow D. F., Ronnow H. M., Chang J., Prabhakaran D., Boothroyd A. T., Rotenberg E., Bostwick A., Grioni M. (2014), Bilayer splitting and wave functions symmetry in Sr3Ir2O7, in PHYSICAL REVIEW B, 89(20), 201114.
Consequences of Broken Translational Symmetry in FeSexTe1-x
Moreschini L., Lin P. -H., Lin C. -H., Ku W., Innocenti D., Chang Y. J., Walter A. L., Kim K. S., Brouet V., Yeh K. -W., Wu M. -K., Rotenberg E., Bostwick A., Grioni M. (2014), Consequences of Broken Translational Symmetry in FeSexTe1-x, in PHYSICAL REVIEW LETTERS, 112(8), 087602.
Momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)
Crepaldi A., Cilento F., Zacchigna M., Zonno M., Johannsen J. C., Tournier-Colletta C., Moreschini L., Vobornik I., Bondino F., Magnano E., Berger H., Magrez A., Bugnon Ph., Autes G., Yazyev O. V., Grioni M., Parmigiani F. (2014), Momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl), in PHYSICAL REVIEW B, 89(12), 125408.
Nodal Landau Fermi-liquid quasiparticles in overdoped La1.77Sr0.23CuO4
Fatuzzo C. G., Sassa Y., Mansson M., Pailhes S., Lipscombe O. J., Hayden S. M., Patthey L., Shi M., Grioni M., Ronnow H. M., Mesot J., Tjernberg O., Chang J. (2014), Nodal Landau Fermi-liquid quasiparticles in overdoped La1.77Sr0.23CuO4, in PHYSICAL REVIEW B, 89(20), 205104.
The electronic structure of the high-symmetry perovskite iridate Ba2IrO4
Moser S., Moreschini L., Ebrahimi A., Dalla Piazza B., Isobe M., Okabe H., Akimitsu J., Mazurenko V. V., Kim K. S., Bostwick A., Rotenberg E., Chang J., Ronnow H. M., Grioni M. (2014), The electronic structure of the high-symmetry perovskite iridate Ba2IrO4, in NEW JOURNAL OF PHYSICS, 16, 013008.
Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene
Ulstrup Soren, Johannsen Jens Christian, Cilento Federico, Miwa Jill A., Crepaldi Alberto, Zacchigna Michele, Cacho Cephise, Chapman Richard, Springate Emma, Mammadov Samir, Fromm Felix, Raidel Christian, Seyller Thomas, Parmigiani Fulvio, Grioni Marco, King Phil D. C., Hofmann Philip (2014), Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene, in PHYSICAL REVIEW LETTERS, 112(25), 257401.
Nature of the Bad Metallic Behavior of Fe1.06Te Inferred from Its Evolution in the Magnetic State
Lin Ping-Hui, Texier Y., Taleb-Ibrahimi A., Le Fevre P., Bertran F., Giannini E., Grioni M., Brouet V. (2013), Nature of the Bad Metallic Behavior of Fe1.06Te Inferred from Its Evolution in the Magnetic State, in PHYSICAL REVIEW LETTERS, 111(21), 217002.
Opening of a Peierls gap in BaVS3 probed by V L-3 edge resonant inelastic x-ray scattering
Ilakovac V., Guarise M., Grioni M., Schmitt T., Zhou K., Braicovich L., Ghiringhelli G., Strocov V. N., Berger H. (2013), Opening of a Peierls gap in BaVS3 probed by V L-3 edge resonant inelastic x-ray scattering, in JOURNAL OF PHYSICS-CONDENSED MATTER, 25(50), 505602.
Structural and electronic properties of the Bi/Au(110)-1x4 surface
Crepaldi A., Tournier-Colletta C., Pivetta M., Autes G., Patthey F., Brune H., Yazyev O. V., Grioni M. (2013), Structural and electronic properties of the Bi/Au(110)-1x4 surface, in PHYSICAL REVIEW B, 88(19), 195433.

Associated projects

Number Title Start Funding scheme
162593 High resolution spectroscopy of strongly correlated electron systems and artificial structures at surfaces 01.12.2015 Project funding (Div. I-III)
141962 Mott Physics Beyond the Heisenberg Model in Iridates and Related Materials 01.01.2013 Sinergia
138023 High resolution spectroscopy of strongly correlated electron systems and artificial structures at surfaces 01.10.2011 Project funding (Div. I-III)
164013 Laser-heated Floating Zone Furnace for EPFL Crystal Growth Facility 01.11.2016 R'EQUIP

Abstract

With this proposal we seek the renewal of the grant which supports research on the electronic properties of novel materials and artificial structures at the Laboratory of Electron Spectroscopy (LSE) of the Institute of Condensed Matter Physics (ICMP-EPFL). This grant covers the operation of the in-house laboratory, and the related synchrotron radiation activities. It supports one post-doc and two PhD positions.Research at LSE traditionally addresses the electronic structure of various forms of quantum matter, i.e. of systems where quantum effects, beyond the usual independent particle picture, determine most physical properties. They include novel electronic materials such as topological insulators and Rashba systems, strongly correlated materials such as transition metal or lanthanide compounds, and materials characterized by a strong coupling between the electrons and the lattice. We put special emphasis on the study of materials with reduced dimensionality, which are especially prone to develop instabilities to interesting broken-symmetry phases, e.g. charge or spin-density-waves, or Mott insulating phases. We investigate these systems by high energy spectroscopies, primarily angle-resolved photoelectron spectroscopy (ARPES) with high energy and momentum resolution. The LSE runs a state-of-the-art ARPES spectrometer equipped with cryogenic capabilities and ancillary characterization techniques. We also regularly perform ARPES experiments with synchrotron radiation, which offers notable advantages in terms of energy tunability and polarization control. At synchrotron radiation facilities we also perform experiments with different spectroscopic techniques, namely x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS), that provide complementary information on the electronic structure.Our work critically depends on the availability of high-quality crystalline samples. In this respect, the long-standing collaboration with the prominent crystal growth laboratory (H. Berger, A. Magrez) of our Institute, specialized in the synthesis of novel materials, is a very important asset. Some other phases are not easily obtained as single crystals, or only exist as thin films. We have developed the expertise to grow in situ thin film samples and ordered interfaces for spectroscopic investigations. This capability also allows us to study specific physical effects - e.g. the Rashba effect - occurring at surfaces and interfaces. Artificial surface and interface structures also often enable a better control over important parameters such as the lattice spacing, the overlayer-substrate interaction, the band filling, than bulk systems. The Institute of Condensed Matter Physics of the EPFL provides a very favorable environment for our research. We have ongoing collaborations with the experimental groups of H. Brune (STM/STS), L. Forro (transport), H. Ronnow (neutrons, magnetism) and, more recently, of J. Chang (neutrons, ARPES). As a result, a whole range of complementary probes can be applied to the same physical problem. We also take advantage of fruitful collaborations with the theory groups of O. Yazyev (DFT calculations) and F. Mila (strong correlations).Two international collaborations are especially relevant: i) with E. Rotenberg and former LSE member L. Moreschini (ALS, Berkeley) for advanced ARPES synchrotron experiments, including the in-situ growth of thin film samples by pulsed laser deposition; ii) with F. Parmigiani and former LSE member A. Crepaldi (Elettra, Trieste) for time-resolved ARPES experiments.In order to sustain the momentum of our research program, we seek:- the continuation of one post-doc position. This is the only senior position within the group, besides the main applicant. The postdoc plays an essential role in the day-by-day implementation of the research program and supervision of the graduate students. - the continuation of two PhD student positionsInvolved Scientists: Prof. M. Grioni, Dr. Cédric Tournier-Colletta (postdoc), Mr. Simon Moser, Mr. Jens Christian Johannsen;
-