Project

Back to overview

Sensorimotor learning in mouse visual cortex

Applicant Keller Georg
Number 149341
Funding scheme Project funding (Div. I-III)
Research institution Friedrich Miescher Institute for Biomedical Research
Institution of higher education Institute Friedrich Miescher - FMI
Main discipline Neurophysiology and Brain Research
Start/End 01.01.2014 - 31.12.2016
Approved amount 610'000.00
Show all

Keywords (8)

Active visual processing; Visual cortex; Two-photon imaging; Electrophysiology; Optogenetics; Mouse vision; Neuroscience; Sensorimotor integration

Lay Summary (German)

Lead
Sehen ist ein aktiver Vorgang - wir bewegen unseren Körper und unsere Augen, und dies hat direkten Einfluss auf das was wir sehen. Die Interaktion zwischen dem was wir sehen und dem was wir tun ist gelernt, das heisst, durch Erfahrung geformt. Wie aber diese sensomotorische Erfahrung die Verarbeitung visueller Signale im visuellen Kortex direkt beeinflusst ist noch unklar.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Das Ziel dieser Forschung ist es zu verstehen wie Erfahrungen und Erwartungen die Wahrnehmung formen und beeinflussen. Zu diesem Zweck untersuchen wir den visuellen Kortex der Maus, während die Maus lernt visuo-motorisch mit der Umwelt zu interagieren – oder mit anderen Worten – während die Maus lernt zu sehen. Dieses Sehen-Lernen basiert auf einem Zusammenspiel zwischen motorischen und visuellen Signalen sowie Gedächtnisinhalten. Wir werden daher in diesem Projekt den Ursprung motorischer und gedächtnisverwandter Signale im visuellen Kortex erforschen. Zusätzlich werden wir die funktionale Relevanz dieser Interaktion untersuchen, als auch ihre plastische Entwicklung.

 

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Unsere Arbeit geht einer der grundlegenden Fragen der Neurowissenschaft nach: Wie entsteht Wahrnehmung? Und trägt das Zusammenspiel von Erwartung und Wahrnehmung zur Entstehung neuer wichtiger Informationen bei? Die Ergebnisse werden nicht nur für die Grundlagenforschung relevant sein, sondern werden auch weitreichende Implikationen für ein besseres Verständnis von Wahrnehmungsstörungen, wie z.B. Halluzinationen, haben. Diese Ergebnisse werden auch dazu beitragen die Wahrnehmungsentwicklung an sich besser zu verstehen.

 

 

 

 

Direct link to Lay Summary Last update: 18.12.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Mismatch Receptive Fields in Mouse Visual Cortex.
Zmarz Pawel, Keller Georg B, Mismatch Receptive Fields in Mouse Visual Cortex., in Neuron, 92(4), 766-772.
PRESYNAPTIC NETWORKS. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules.
Wertz Adrian, Trenholm Stuart, Yonehara Keisuke, Hillier Daniel, Raics Zoltan, Leinweber Marcus, Szalay Gergely, Ghanem Alexander, Keller Georg, Rózsa Balázs, Conzelmann Karl-Klaus, Roska Botond, PRESYNAPTIC NETWORKS. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules., in Science (New York, N.Y.), 349(6243), 70-4.
Stimulus relevance modulates contrast adaptation in visual cortex.
Keller Andreas J, Houlton Rachael, Kampa Björn M, Lesica Nicholas A, Mrsic-Flogel Thomas D, Keller Georg B, Helmchen Fritjof, Stimulus relevance modulates contrast adaptation in visual cortex., in eLife, 6(n/a), n/a-n/a.
Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo.
Barnes Samuel J, Sammons Rosanna P, Jacobsen R Irene, Mackie Jennifer, Keller Georg B, Keck Tara, Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo., in Neuron, 86(5), 1290-303.

Collaboration

Group / person Country
Types of collaboration
Laboratory of Dr. Botond Roska, FMI Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Laboratory of Prof. Silvia Arber, FMI Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Exchange of personnel
Laboratory of Prof. Dr. Thomas Mrsic-Flogel, University College London Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Laboratory of Prof. Haruhiko Bito Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Laboratory of Dr. Tara Keck Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Transylvanian Exp. Neuroscience Summer School Talk given at a conference Learning to see 06.06.2016 Cluj, Romania Keller Georg;
Giessbach meeting Talk given at a conference Learning to see 19.05.2016 Giessbach, Switzerland Keller Georg;
Society for Neuroscience Meeting Talk given at a conference Sensorimotor learning in mouse cortex 17.10.2015 Chicago, United States of America Keller Georg;
Frontiers in neurophotonics symposium Talk given at a conference Active visual processing 03.10.2015 Quebec city, Canada Keller Georg;
Society for Neuroscience Meeting Talk given at a conference Visuomotor learning 15.11.2014 Washington DC, United States of America Keller Georg;
Japanese Neuroscience Meeting Talk given at a conference Visuomotor learning 11.09.2014 Yokahama, Japan Keller Georg;


Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions TecNight: Lernen zu sehen: Neurobiologie der Wahrnehmung German-speaking Switzerland 2016

Associated projects

Number Title Start Funding scheme
127825 Active visual processing in awake, behaving rodents 01.06.2009 Fellowships for prospective researchers
188735 Gating mechanisms of visuomotor plasticity in mouse cortex 01.10.2019 Project funding (Div. I-III)
155795 Plasticity and dynamics of predictive signals in mouse visual cortex 01.02.2015 Temporary Backup Schemes

Abstract

I here propose to investigate sensorimotor learning using the mouse visual cortex as a model system. In classical terms, visual perception is described as a feed-forward processing hierarchy in the form of a sequence of more and more complex filters. Recent evidence, however, has brought the completeness of this description to question. There is accumulating evidence for non-sensory, motor-related signals in primary sensory areas of cortex. A large fraction of the activity in primary visual cortex (V1), for example, persists even in the complete absence of visual input and seems to be driven purely by motor output. In addition we, and others, could show that there are strong feedback mismatch signals in both primary visual and auditory areas of cortex, potentially encoding a difference between actual and predicted sensory feedback. This suggests that primary sensory areas of cortex are actively involved in sensorimotor learning, in that they may provide the mismatch, or “error”, signal necessary for motor adaptation. However, it is still unclear what the source of the motor related signals in V1 is that underlie this computation. We have recently been able to identify the anterior cingulate cortex (ACC), a supplementary motor area, as one source of motor related activity in primary visual cortex of the mouse. I now propose to investigate sensorimotor learning both on the basis of this connection between ACC and V1, as well as in terms of the functional and the genetic changes involved. To this end we will characterize motor related inputs to V1 functionally and anatomically using a combination of two-photon imaging and optogenetic stimulation in the behaving mouse, as well as methods of viral circuit mapping. In addition we will use virtual reality environments, which allow us to alter sensorimotor contingencies, to measure the functional changes underlying sensorimotor learning. This research is of importance not only because visual cortex serves as a model for our understanding of cortical function in general, but because sensorimotor dysfunction is characteristic of many developmental and psychological disorders. Dysfunction of ACC and possibly its communication with sensory areas of cortex, for example, are implicated in schizophrenia. Interpretation of such findings is complicated by the fact that only comparably little is known about the function of ACC or the neural substrate of sensorimotor learning in general. Using the techniques we developed we can now address questions of sensorimotor learning and specifically the involvement of ACC in this process in a mouse model. I am confident that our work will contribute to a more thorough understanding of both the function of visual cortex and of the mechanisms of sensorimotor learning, and specifically may lay the foundation for a new approach to investigating the neural basis of sensorimotor dysfunction.
-