Project

Back to overview

Probing the origin of the Moon with non-traditional stable isotopes

Applicant Schönbächler Maria
Number 149282
Funding scheme Project funding (Div. I-III)
Research institution Institut für Geochemie und Petrologie ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geochemistry
Start/End 01.04.2014 - 31.05.2018
Approved amount 574'066.00
Show all

Keywords (5)

volatile elements; isotope fractionation; Moon formation; meteorites; stable isotopes

Lay Summary (German)

Lead
Es ist allgemein akzeptiert, dass der Erdmond durch eine gigantische Kollision der Proto-Erde mit einem anderen Himmelskörper entstanden ist, der etwa die Grösse des Mars hatte. Nach der Kollision bildete sich im Orbit der Erde eine Scheibe aus heissem Material. Dieses kühlte ab, kollidierte mit sich selbst und klumpte zusammen, um den Mond zu bilden. Obwohl diese Entstehungstheorie allgemein anerkannt ist, sind viele physikalischen und chemischen Aspekte der Mondbildung noch nicht verstanden.
Lay summary

Inhalt und Ziel des Forschungsprojekts 

Das Ziel dieses Projektes ist es, neue Beweise zu finden, um die Mondentstehung besser zu verstehen. Ein zu untersuchende Frage wird sein, ob der Mond hauptsächlich aus Erdmaterial aufgebaut ist, oder ob die Bausteine des Mondes aus dem All stammen. Des Weiteren werden wir erforschen, ob Mond- und Erdmaterial zeitweilig miteinander im Gleichgewicht standen und Material austauschten als Folge der energetischen Kollision, die zur Mondbildung führte. Dies würde bedeuten, dass der Mond heute die chemische und isotopische Zusammensetzung der Erde von vor 4.5 Milliarden Jahre bewahrt hat und folglich als Geschichtsarchiv der Erde benutzt werden könnte.

Zu diesem Zwecke werden wir neue analytische Techniken entwickeln, um hochpräzise Isotopenzusammensetzungen von verschiedenen Elementen mit unterschiedlicher Flüchtigkeit zu bestimmen. Wir werden die Ergebnisse für Mond- und Erdproben vergleichen und auf diese Weise systematisch nach massenabhängigen Isotopeneffekten suchen, die durch Evaporation- und Kondensationsprozesse während der Mondbildung entstanden.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Unsere Arbeit wird neue und wichtige Informationen über die Entstehung des Mondes liefern und dazu beitragen die Bedingungen, wie sie in der frühen Geschichte der Erde herrschten, besser zu verstehen. Das Projekt fördert ein besseres Verständnis der wichtigen chemischen und physikalischen Prozesse, die während und kurz nach der gigantischen Kollision der Erde mit einem grossen Himmelskörper herrschten.

 
Direct link to Lay Summary Last update: 16.10.2013

Lay Summary (English)

Lead
It is generally accepted that the Earth’s Moon formed through a giant collision of a mars-sized body with the Proto-Earth. After the collision a hot debris disk formed around the Earth, which then cooled and the components of the disk accreted to form our Moon. Although this broad picture is widely accepted, many of the chemical and physical processes that led to the formation of the Moon are still unclear.
Lay summary

 

The goal of this project is to better understand how the Moon formed and to test whether the Moon is built from terrestrial materials or if its building blocks originated from space. We will also assess if lunar and terrestrial materials equilibrated in the aftermath of the energetic giant impact such that the Moon preserved a chemical and isotopic signature that reflects that of the Earth about 4.5 Ga ago.

To this end, we will develop new analytical techniques to determine – to a high precision - the stable isotope composition of elements with different volatilities. By comparing the results for terrestrial and lunar samples in a systematic way, we will seek for mass-dependent isotope effects generated by evaporation and condensation during the energetic moon-forming impact.

This project will provide a better understanding of the physical and chemical processes prevailing during and in the aftermath of the moon-forming giant impact. It will deepen our understanding of the Moon formation process and the important physical and chemical conditions that occurred early in the history of our planet Earth.

Direct link to Lay Summary Last update: 16.10.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Evidence for extremely rapid magma ocean crystallization and crust formation on Mars
Bouvier Laura C., Costa Maria M., Connelly James N., Jensen Ninna K., Wielandt Daniel, Storey Michael, Nemchin Alexander A., Whitehouse Martin J., Snape Joshua F., Bellucci Jeremy J., Moynier Frédéric, Agranier Arnaud, Gueguen Bleuenn, Schönbächler Maria, Bizzarro Martin (2018), Evidence for extremely rapid magma ocean crystallization and crust formation on Mars, in Nature, 558(7711), 586-589.
Isotope-dilution anchoring of zircon reference materials for accurate Ti-in-zircon thermometry
Szymanowski Dawid, Fehr Manuela A., Guillong Marcel, Coble Matthew A., Wotzlaw Jörn-Frederik, Nasdala Lutz, Ellis Ben S., Bachmann Olivier, Schönbächler Maria (2018), Isotope-dilution anchoring of zircon reference materials for accurate Ti-in-zircon thermometry, in Chemical Geology, 481, 146-154.
Variable Tl, Pb, and Cd concentrations and isotope compositions of enstatite and ordinary chondrites-Evidence for volatile element mobilization and decay of extinct 205 Pb
Palk Carl, Andreasen Rasmus, Rehkämper Mark, Stunt Alison, Kreissig Katharina, Coles Barry, Schönbächler Maria, Smith Caroline (2018), Variable Tl, Pb, and Cd concentrations and isotope compositions of enstatite and ordinary chondrites-Evidence for volatile element mobilization and decay of extinct 205 Pb, in Meteoritics & Planetary Science, 53(2), 167-186.
The Stubenberg meteorite-An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field
Bischoff Addi, Barrat Jean-Alix, Bauer Kerstin, Burkhardt Christoph, Busemann Henner, Ebert Samuel, Gonsior Michael, Hakenmüller Janina, Haloda Jakub, Harries Dennis, Heinlein Dieter, Hiesinger Harald, Hochleitner Rupert, Hoffmann Viktor, Kaliwoda Melanie, Laubenstein Matthias, Maden Colin, Meier Matthias M. M., Morlok Andreas, Pack Andreas, Ruf Alexander, Schmitt-Kopplin Philippe, Schönbächler Maria, Steele Robert C. J., et al. (2017), The Stubenberg meteorite-An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field, in Meteoritics & Planetary Science, 52(8), 1683-1703.
Zirconium isotope constraints on the composition of Theia and current Moon-forming theories
Akram W., Schönbächler M. (2016), Zirconium isotope constraints on the composition of Theia and current Moon-forming theories, in Earth and Planetary Science Letters, 449, 302-310.
The initial abundance and distribution of 92 Nb in the Solar System
Iizuka Tsuyoshi, Lai Yi-Jen, Akram Waheed, Amelin Yuri, Schönbächler Maria (2016), The initial abundance and distribution of 92 Nb in the Solar System, in Earth and Planetary Science Letters, 439, 172-181.
Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system
Akram W., Schönbächler M., Bisterzo S., Gallino R. (2015), Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system, in Geochimica et Cosmochimica Acta, 165, 484-500.
Unlocking the zinc isotope systematics of iron meteorites
Bridgestock L.J., Williams H., Rehkämper M., Larner F., Giscard M.D., Hammond S., Coles B., Andreasen R., Wood B.J., Theis K.J., Smith C.L., Benedix G.K., Schönbächler M. (2014), Unlocking the zinc isotope systematics of iron meteorites, in Earth and Planetary Science Letters, 400, 153-164.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Goldschmidt 2018 Talk given at a conference Titanium Stable Isotope Fractionation on the Moon: Evidence for Inter-Mineral Isotopic Fractionation 12.08.2018 Boston, United States of America Mandl Maximilian; Schönbächler Maria;
Goldschmidt 2018 Talk given at a conference The Sn Isotope Composition of Chondrites, the Earth and the Moon 12.08.2018 Boston, United States of America Schönbächler Maria; Friebel Matthias;
ISSI workshop Sample return Talk given at a conference Nucleosynthetic Anomalies, Dating and Planet Formation 05.08.2018 Bern, Switzerland Friebel Matthias; Schönbächler Maria; Akram Waheed; Mandl Maximilian;
Nuclei in the Cosmos Talk given at a conference NUCLEI IN THE COSMOS NUCLEOSYNTHET I CF I NGERPR I NTS I NMETEOR I TESAND PLANETS 24.06.2018 L'Aquila, Italy Akram Waheed; Schönbächler Maria;
CNSA(LESEC)-ESA lunar science workshop ESTEC Talk given at a conference Tracing the origin of the Moon with isotopes 16.06.2018 amsterdam, Netherlands Friebel Matthias; Mandl Maximilian; Schönbächler Maria; Akram Waheed;
NIPR Talk given at a conference Recent advances in Nb-Zr chronometry and early Martian silicate differentiation 07.12.2017 Tokyo, Japan Schönbächler Maria;
Goldschmidt 2017 Talk given at a conference Nucleosynthetic Tin Isotope Variations in Chondrites 13.08.2017 Paris, France Friebel Matthias; Schönbächler Maria;
79th Annual Meeting of the Meteoritical Society 2016 Talk given at a conference TIN IN ISOTOPE COMPOSITIONS OF CARBONAC E OUS CHONDRITES 07.08.2016 Berlin, Germany Friebel Matthias; Schönbächler Maria;
Goldschmidt 2016 Talk given at a conference Terrestrial Titanium Stable Isotope Fractionation during Magmatic Processes 26.06.2016 Yokoyama, Japan Schönbächler Maria; Mandl Maximilian;
Goldschmidt 2015 Talk given at a conference Keynote: Isotopic Constraints on the Formation of the Earth and the Moon 16.08.2015 Parg, Czech Republic Schönbächler Maria; Akram Waheed;
Goldschmidt 2015 Poster Sn Stable Isotope Analysis: A New Method for Sn Separation for Geological Materials 16.08.2015 Prag, Czech Republic Schönbächler Maria; Friebel Matthias;
46th Lunar and Planetary Science Conference 2015 Talk given at a conference The Cadmium Isotopic Composition of Earth and Carbonaceous Chondrites 16.03.2015 Houston, United States of America Schönbächler Maria;


Associated projects

Number Title Start Funding scheme
179129 Tracking planet formation, differentiation and the moon-forming giant impact: an integrated approach using non-traditional stable isotopes 01.04.2018 Project funding (Div. I-III)

Abstract

Recently the Moon-forming giant impact theory has attracted considerable attention. This theory proposes that the Earth’s Moon formed by a collision of the Earth with another body called Theia. The collision generated a hot debris disk around the Earth from which our Moon accreted. The new studies were motivated by the fact that the Earth and Moon share identical O and Ti isotope compositions (at ppm precision), while solar system bodies in general exhibit distinct isotopic O and Ti compositions. The standard giant impact model (Canup and Asphaug, 2001) predicts that the Moon predominately consists of impactor material with likely non-terrestrial isotope signatures. This is at odds with the striking isotopic similarity of the Earth - Moon system. The latest simulations (Canup, 2012; Cuk and Stewart, 2012; Reufer et al., 2012) show, however, that it is also possible to mainly build the Moon from terrestrial material, which facilitates the explanation of the Earth-Moon isotope similarities.Recently, novel evidence was presented indicating that the Moon displays a distinctly heavier Zn stable isotope composition relative to the Earth (Paniello et al., 2012). This was interpreted to be the result of isotope fractionation that occurred in the aftermath of the giant impact. Zinc as a moderately volatile element was volatilized during the giant impact and this was followed by partial re-condensation during which the light Zn isotopes were preferentially lost from the lunar accretion disk to space. The remaining material - enriched in heavy Zn isotopes - accreted to form the Moon. Noteworthy, it has also been recently proposed that the giant impact resulted in stable isotope fractionation of the refractory rare earth element (REE) Ytterbium (Yb) (Albalat et al., 2012). For Yb, however, the Moon displays a lighter isotopic composition relative to the Earth. This was attributed to stable isotope fractionation that occurred in the Earth’s atmosphere shortly after the giant impact. The authors suggest that once the high temperatures of the silicate vapor atmosphere (>3000 K) after the giant impact began to subside, the refractory element Yb started to condense early in the condensation sequence. The liquid phase then rained out and fell back to the Earth, while isotopically light vapor was dragged outwards, condensed outside the Roche limit where the Moon formed and in such a way was incorporated into the Moon.Assuming that these interpretations of Zn (moderately volatile) and Yb (refractory element) isotope data are correct, these observations provide strong constraints on the physical conditions during and in the aftermath of the giant impact. Stable isotope fractionation of refractory and moderately volatile elements requires distinct physical conditions (e.g., temperature, pressure and oxygen fugacity). Moreover, if Zn and Yb isotopes were fractionated through the Moon-forming giant impact, collateral mass-dependent effects are expected in the isotopic composition of other refractory and moderately volatile elements. However, very little is known about the stable isotope composition of refractory and most moderately volatile elements in lunar materials. For this reason I propose a comprehensive isotope study, in which the stable isotope compositions of refractory and moderately volatile elements are determined to identify mass-dependent isotope effects generated by the Moon-forming giant impact. Such collateral effects can be used to constrain the physical conditions in the aftermath of the giant impact or their absence will reveal that the Zn and Yb isotope differences observed between the Earth and the Moon are not generated by the Moon-forming giant impact. The new data will also be used to assess whether the Earth was built from chondrite-like materials, as assumed in many terrestrial accretion models.
-