Project

Back to overview

Copper/Electrolyte Interfaces under Reactive Conditions II

Applicant Broekmann Peter
Number 149224
Funding scheme Project funding (Div. I-III)
Research institution Departement für Chemie und Biochemie Universität Bern
Institution of higher education University of Berne - BE
Main discipline Physical Chemistry
Start/End 01.01.2014 - 31.03.2017
Approved amount 187'500.00
Show all

All Disciplines (2)

Discipline
Physical Chemistry
Material Sciences

Keywords (3)

Electrochemistry; Metal deposition; Adsorption phenomena

Lay Summary (German)

Lead
Abscheideprozesse an Kupfer/Elektrolyt-Grenzflächen spielen eine zentrale Rolle in der modernen Halbleitertechnologie. Additivkontrolliertes Kupferplating wird hier zur Herstellung von Leiterbahnarchitekturen verwendet. Das Projekt hat sich zum Ziel gesetzt, den Wirkungsmechanismus von Additiven für den sogenannten Damascene-Prozess auf molekularer Ebene aufzuklären.
Lay summary

Hintergrund

Abscheideprozesse aus wässrigen Elektrolytlösungen, die lokal unterschiedliche Depositionsraten auf einem Substrat erfordern, werden in der Regel durch das Wechselspiel von verschiedenen organischen und anorganischen Additiven gesteuert, die im Verlauf des Abscheideprozesses entweder mit der Substratoberfläche selbst oder den Intermediaten des Abscheidevorgangs interagieren. Die hierfür notwendigen Unterschiede in der lokalen Additivkonzentration werden auf der Substratoberfläche durch die Transport- Adsorptionsgeschwindigkeit der verschiedenen Additive reguliert.Prominentes Beispiel hierfür ist der sogenannte Damascene-Prozess, mit dessen Hilfe Leiterbahnarchitekturen durch einen elektrochemischen Abscheideprozess mit Kupfer gefüllt werden (Kupfertechnologie). Die kleinsten zu füllenden Leiterbahnstrukturen erreichen dabei Durchmesser von nunmehr nur noch 15 Nanometern. Ein atomistisches Verständnis der zeitabhängigen synergistischen und antagonistischen Wechselwirkungen von Additiven mit der Kupferoberfläche unter reaktiven Bedingungen fehlt bislang.      

Das Ziel

Das Projekt hat zum Ziel, die Wechselwirkung von sogenannten Beschleuniger- und Suppressoradditiven mit einkristallinen Modelloberflächen unter reaktiven Bedingungen auf einer atomaren bzw. molekularen Ebene zu verstehen. Zur strukturellen Charakterisierung der Kupfer/Elektrolyt-Grenzflächen kommen hierfür moderne Rastersondenmethoden wie der in-situ Rastertunnelmikroskopie (STM).

Bedeutung

Erkenntnisse zum grundlegendenden atomistischen Mechanismus der Additivwechselwirkung mit der Kupfersubstratoberfläche sollen dazu beitragen, neue, leistungsfähigere Additive zu entwickeln, die in Zukunft in der Hableiterindustrie Verwendung finden. Dieses grundlagenorientierte Projekt ergänzt existierende Kooperationen des Hauptgesuchstellers mit der BASF-AG, in denen die Additivwirkung auf realen Waferoberflächen, relevant für die zukünftige 16nm-Technologie, charakterisiert werden.      

Direct link to Lay Summary Last update: 29.09.2013

Responsible applicant and co-applicants

Employees

Collaboration

Group / person Country
Types of collaboration
Prof. Peter Wurz/Center for Space and Habitability/ Universität Bern Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Michele Cascella/Universität Bern Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Global Buisiness Unit Electronic Materials/BASF SE Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
European Workshop on Laser Ablation Poster Towards sensitive and quantitative three dimensional laser ablation ionization mass spectrometry 12.07.2016 Ljubljana, Slovenia Riedo Valentine;
European Workshop on Laser Ablation Talk given at a conference Chemical analysis of solid materials by a LIMS instrument designed for space research: nm and sub-nm depth profiling and molecular desorption studies 12.07.2016 Ljubljana, Slovenia Riedo Valentine;
EGU- European Geosciences Union Poster Chemical analysis of solid materials by a LIMS instrument designed for space research: 2D elemental imaging, sub-nm depth profiling and molecular surface analysis 04.04.2016 Wien, Austria Riedo Valentine;
BASF Forum on Corrosion Science 2015 Talk given at a conference Additive Assisted Cu Electrodeposition for Semiconductor and Electrocatalytic Applications 04.12.2015 Ludwigshafen, Germany Broekmann Peter;
228th ECS Meeting Talk given at a conference Towards Quantification of Contaminants in Electrodeposited Cu Films 11.10.2015 Phoenix, United States of America Broekmann Peter; Riedo Valentine;
66th Annual Meeting of the ISE Talk given at a conference Combining Superfill and Leveling Capabilities: New Hybrid Polymers for Damascene Applications 04.10.2015 Taipeh, Taiwan Broekmann Peter;
66th Annual Meeting of the ISE Talk given at a conference Fundamental Aspects and Applications of Copper Electrodeposition 04.10.2015 Taipeh, Taiwan Broekmann Peter;
SCS Fall Meeting Talk given at a conference High resolution laser ablation depth-profiling mass spectrometry 04.09.2015 Lausanne, Switzerland Riedo Valentine;
227th ECS Meeting Talk given at a conference Smart polymers for future Damascene applications: Combining bottom-up and levelling capabilities 24.05.2015 Chicago, United States of America Broekmann Peter;
European winter conference on Plasma Spectrochemistry Talk given at a conference High Resolution Chemical Depth Profiling Analysis of Semiconductor Materials by a sensitive LIMS System 22.02.2015 Münster, Germany Riedo Valentine;
583. WE-Heraeus-Seminar on Electrochemical Surface Science Poster Suppression of the Hydrogen Evolution Reaction in additive supported electrochemical Synthesis Methods of Amines 18.01.2015 Bad Honnef, Germany Riedo Valentine;
583rd Wilhelm und Else Heraeus Symposium: Electrochemical Surface Science Talk given at a conference From Fundamentals towards Applications: Nanoelectroplating in the Semiconductor Industry 18.01.2015 Bad Honnef, Germany Broekmann Peter;
ELECTROCHEMISTRY 2014 Talk given at a conference From Fundamentals towards Applications: Nanoelectroplating in the Semiconductor Industry 22.09.2014 Mainz, Germany Broekmann Peter;
10th BASF Forum of Amphiphilic Systems Talk given at a conference Use of Amphiphilic Systems in Microchip Production: From Fundamentals towards Applications 31.01.2014 BASF Ludwigshafen (Deutschland), Germany Broekmann Peter;


Associated projects

Number Title Start Funding scheme
129925 Copper/Electrolyte Interfaces under Reactive Conditions 01.09.2010 Project funding (Div. I-III)
172507 CO2 to Value: Electroconversion of CO2 on Electrodeposited Metal Foam Catalysts 01.04.2017 Project funding (Div. I-III)
139758 New concepts for the 3D-TSV electroplating: From the tailored design to the application of suppressor additives 01.02.2012 Marie Heim-Voegtlin grants

Abstract

Copper electrodeposition is a key processing step in today`s chip manufacturing. Smallest interconnect features already reach diameters below 22nm. With the feature dimensions shrinking into the lower nano-meter regime the interfacial structure becomes increasingly important for the mastering of these metal deposition processes. Essential for the working of the Damascene process are various organic and inorganic additives. Ensembles of these additives form complex molecular ensembles at the interface that cause either an accelerating or a suppressing effect. It is the aim of this project to develop characteristic structural motifs on idealized model substrates that are capable to mimic the active additive ensembles in the real deposition process. This will enable us to study these structural motifs under well-defined conditions with high spatial and temporal resolution in order to unravel the synergistic interplay of individual additives in these additive ensembles at the interface. Important for the working of superfill phenomena are in particular additive-stabilized Cu(I) intermediates. We will study the appearance of concentration gradients of these additive-stabilized Cu(I) species using highly advanced femto-laser ablation techniques combined with time-of-flight mass-spectrometry (TOF-MS) for the depth profiling of Cu/ice (frozen electrolyte) interfaces. For such a depth profiling we will quick-freeze Cu/electrolyte model interfaces under reactive conditions. Advanced suppressor additive concepts for future Damascene applications will make use of these Cu(I) intermediates in order to combine both superfill and leveling capabilities in one single polymer additive. Fill experiments of test wafer specimens will be carried out to prove the feasibility of this new additive concept. MPS-stabilized Cu(I) solutions will further be used to electrodeposit ultra-thin Cu seed layers on Ru liners. Ru will serve as new barrier material in advanced Damascene applications. We will apply in-situ electrochemical scanning tunneling microscopy (EC-STM) to study the interaction of additives and Cu(I) intermediates with both single-crystalline Ru model surfaces and Ru wafer substrates. Video-rate EC-STM will be applied to characterize in particular the initial stage of Cu nucleation of these Ru substrates with high spatial and temporal resolution.
-