Project

Back to overview

Tomographic thermal tracer investigation of alluvial aquifer heterogeneity

Applicant Löw Simon
Number 149128
Funding scheme Project funding (Div. I-III)
Research institution Departement Erdwissenschaften ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Hydrology, Limnology, Glaciology
Start/End 01.11.2013 - 30.04.2017
Approved amount 218'383.00
Show all

All Disciplines (2)

Discipline
Hydrology, Limnology, Glaciology
Other disciplines of Earth Sciences

Keywords (5)

Thermal tracer testing; Thermal dispersion; Hydraulic tomography; Groundwater; Simulation

Lay Summary (German)

Lead
Wärmetransport im geologischen Untergrund gelangt derzeit vermehrt in den Fokus von Forschungsiniziativen. Computergestützte Modelle sind hier zentrale Werkzeuge. Bei der ihrer Anwendung fehlt allerdings oft Detailwissen zur Beschreibung eines Standorts. Gerade bei thermischen Transport im Grundwasser werden daher vereinfachende Annahmen wie Homogenität bevorzugt. Nur übersieht man auf diese Weise die oft erheblichen Effekte heterogener Strukturen auf die Ausbreitung thermischer Signale.
Lay summary

Im vorliegenden Projekt werden Injektionsversuche von erwärmten Wasser in Grundwasser zusammen mit hochauflösenden hydraulischen Versuchen durchgeführt und durch verschiedene Anordnungen von Beobachtungsbrunnen der thermische Transport in Aquiferen untersucht. Diese Versuche werden zugleich computergestützt an virtuellen Realitäten (Aquifer-Analogen) wie auch an einem Feldstandort durchgeführt. Ziel ist, detailliert Einsicht zu erhalten in die Wirkung heterogener sedimentärer Strukturen auf die Ausbreitung der induzierten thermischen Anomalien im Grundwasser. Zusätzlich wird durch die Kombination von hydraulisch-tomographischem Feldversuch mit thermischen Injektionsversuch ein neues kombiniertes hydrogeophysikalisches Erkundungsverfahren entwickelt.

Direct link to Lay Summary Last update: 07.10.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Travel-time-based thermal tracer tomography
Somogyvári Márk, Bayer Peter, Brauchler Ralf (2016), Travel-time-based thermal tracer tomography, in Hydrology and Earth System Sciences, 20(5), 1885-1901.
Field validation of thermal tracer tomography for reconstruction of aquifer heterogeneity
Somogyvári Márk, Bayer Peter, Field validation of thermal tracer tomography for reconstruction of aquifer heterogeneity, in Water Resources Research.
Synthetic fracture network characterization with transdimensional inversion
Somogyvári Márk, Jalali Mohammadreza, Jimenez Parras Santos, Bayer Peter, Synthetic fracture network characterization with transdimensional inversion, in Water Resources Research.

Collaboration

Group / person Country
Types of collaboration
Eawag Switzerland (Europe)
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
EGU General Assembly 2017 Talk given at a conference Reconstruction of two-dimensional fracture network geometry by transdimensional inversion 23.04.2017 Vienna, Austria Bayer Peter; Somogyvari Mark;
EGU General Assembly 2017 Poster Characterization of an alluvial aquifer with thermal tracer tomography 23.04.2017 Vienna, Austria Somogyvari Mark; Bayer Peter;
14th Swiss Geoscience Meeting Talk given at a conference Fracture network characterization using a stochastic transdimensional algorithm. 18.11.2016 Geneva, Switzerland Somogyvari Mark;
43rd IAH Congress Poster Advanced Geometrical Characterization of Fracture Networks via Tomographic Imaging 25.09.2016 Montpellier, France Somogyvari Mark;
EGU General assembly 2016 Poster Tracer tomography (in) rocks! 17.04.2016 Vienna, Austria Somogyvari Mark; Bayer Peter;
EGU General Assembly 2016 Poster Thermal tracer tomography: from numerical simulation to field implementation 17.04.2016 Vienna, Austria Bayer Peter; Somogyvari Mark;
AGU Fall Meeting 2015 Poster From Stochastic toward Deterministic Characterization of Discrete Fracture Network via Thermal Tracer Tests. 14.12.2015 San Francisco, United States of America Bayer Peter; Somogyvari Mark;
AGU Fall Meeting 2015 Poster A New Concept for Thermal Tracer Tomography to Identify Heterogeneous Aquifer Structures. 14.12.2015 San Francisco, United States of America Somogyvari Mark; Bayer Peter;
AGU Chapman Conference - The MADE Challenge for Groundwater Transport in Highly Heterogeneous Aquifers: Insights from 30 Years of Modeling and Characterization at the Field Scale and Promising Future Directions Poster A Stochastic Approach to Characterize Discrete Fracture Network Patterns." The MADE Challenge for Groundwater Transport in Highly Heterogeneous Aquifers: Insights from 30 Years of Modeling and Characterization at the Field Scale and Promising Future Direc 05.10.2015 Valencia, Spain Bayer Peter; Somogyvari Mark;
EGU General assembly 2015 Poster Tomographic inversion of active thermal tracer experiments to characterize aquifer heterogeneity 12.04.2015 Vienna, Austria Bayer Peter; Somogyvari Mark;
EGU General assembly 2015 Poster Active thermal tracer testing in a shallow aquifer of the Thur valley, Switzerland 12.04.2015 Vienna, Austria Somogyvari Mark; Bayer Peter;


Associated projects

Number Title Start Funding scheme
140450 A field assessment of high resolution aquifer characterization: An integrated approach combining hydraulic tomography and tracer tomography 01.04.2012 Project funding (Div. I-III)

Abstract

Currently, research on heat transport in the subsurface is in a renaissance. This is stimulated by the observed response of the ground thermal regime to climate change, by the growing interest in geothermal energy use, and by the manifold efforts to integrate natural temperature variation in hydrogeological models. For setting up these models, specifying spatially variable hydraulic conductivity is the greatest challenge. In fact, the role of spatial hydraulic heterogeneity for heat transport in ground and groundwater systems is often ignored. This is because thermal diffusivity is relatively high, and the dispersive heat transport component that originates from macro-scale hydraulic heterogeneity in natural aquifers is regularly overlooked. As a consequence no established methods are available to investigate macro-scale thermal dispersion processes, and only few efforts have been undertaken to induce thermal signals actively in aquifers to investigate coupled hydraulic-thermal processes. The proposed project suggests using heat as a tracer by active injection of warm water in an aquifer. By downgradient, depth-dependent monitoring of the evolution of an induced thermal plume, the effect of heterogeneity on macrodispersive heat transport will be quantified. The purpose of this project, however, is not only exploring in detail thermal macrodispersivity in porous sedimentary aquifers. We want to further develop thermal tracer field testing and interpretation to facilitate reconstruction of spatial aquifer heterogeneity in an innovative way. For this, new tomographic procedures are introduced that include the thermal signals recorded in observation wells in an inversion procedure to determine spatial variability of hydraulic conductivity and porosity. We will utilize two realistic aquifer analogs in order to study analytically and numerically thermal transport in natural heterogeneous aquifers. The findings from forward and inverse coupled thermal-hydraulic simulations with these analogs will be fundamental for demonstration and validation at a well-equipped field site with a shallow alluvial aquifer.
-