Projekt

Zurück zur Übersicht

Topological states in quantum condensed matter and advanced materials

Gesuchsteller/in Rüegg Andreas
Nummer 148081
Förderungsinstrument Ambizione
Forschungseinrichtung Institut für Theoretische Physik ETH Zürich
Hochschule ETH Zürich - ETHZ
Hauptdisziplin Theoretische Physik
Beginn/Ende 01.09.2013 - 30.11.2013
Bewilligter Betrag 126'059.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Theoretische Physik
Physik der kondensierten Materie

Keywords (11)

Topological insulators; Topological invariants; Electronic structure; Lattice models; Chern insulators; Surface and edge states; Condensed matter theory; Heavy fermions; Strongly correlated electron systems; Oxide heterostructures; Lattice defects

Lay Summary (Deutsch)

Lead
Topologische Isolatoren sind neuartige Materialien welche seit einigen Jahren sehr intensiv erforscht werden. Diese Systeme sind jedoch nicht isolierend, obwohl ihr Name dies suggeriert. Tatsächlich besitzen sie metallische Oberflächen welche Strom leiten können, selbst dann wenn das Material verunreinigt ist. Nebst möglichen elektronischen Anwendungen sind diese Materialien auch aus fundamentaler Sicht interessant, da sie eine Verbindung mit dem mathematischen Feld der Topologie herstellen.
Lay summary

Inhalt und Ziel des Forschungsprojekts:

Das übergeordnete Ziel ist es, neue Materialsysteme für Topologische Isolatoren zu finden und theoretisch beschreiben zu können. Insbesondere wollen wir besser verstehen, wie Wechselwirkungseffekte zwischen Elektronen die Physik beeinflussen können. Wir werden mit Hilfe von modernen theoretischen Methoden die elektronische Struktur von Systeme wie Übergangsmetall Oxide und Kondo Isolatoren aus dem mathematischen Blickwinkel der Topologie untersuchen.

Wissenschaftlicher und gesellschaftlicher Kontext

Von einem praktischen Standpunkt aus ist es wichtig, neue Materialsysteme zu identifizieren, um das volle Potential von topologischen Isolatoren ausschöpfen zu können. Mögliche Anwendungen dieser Systeme liegen in der Nanoelektronik, Spintronik sowie als Plattform für Quantencomputer.

Direktlink auf Lay Summary Letzte Aktualisierung: 28.08.2013

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
Topological invariants, surface states, and interaction-driven phase transitions in correlated Kondo insulators with cubic symmetry
Markus Legner, Andreas Rüegg, Manfred Sigrist, Topological invariants, surface states, and interaction-driven phase transitions in correlated Kondo insulators with cubic symmetry, in Physical Review B.

Wissenschaftliche Veranstaltungen

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
BEC 2013 Vortrag im Rahmen einer Tagung 07.09.2013 Sant Feliu, Spanien Rüegg Andreas;


Abstract

The present research proposal is centered around topological states of matter and in particular the new class of materials called topological insulators. These materials are fully gapped in bulk but a symmetry-protected topological invariant associated with the electronic structure guarantees the existence of surface states with unique properties. Over the last years, both two- and three dimensional versions of this topological state of matter were studied and a handful of experimental systems were identified. The unusual nature of the electronic structure carries the potential for applications in spintronics and low-power electronics or even as platform for topological quantum computing in cleverly engineered heterostructures.The discovery of topological insulators stimulated a large body of experimental and theoretical work. A main driving force behind this effort is the urge to identify new quantum systems hosting topological states of matter. My planned research focuses on topological states in advance materials and I want to concentrate on the following three areas: (i) topological oxide heterostructures, (ii) topological crystalline insulators and (iii) topological Kondo insulators. These areas are currently very active subfields in which both theoretical and experimental studies are carried out. A successful completion of the whole project will significantly enhance our understanding of the mechanisms behind the occurrence of topological states in nature.
-