Projekt

Zurück zur Übersicht

Designing novel electrocatalysts for fuel cells and electrolyzers by tailoring perovskite surface properties

Gesuchsteller/in Fabbri Emiliana
Nummer 148041
Förderungsinstrument Ambizione
Forschungseinrichtung Labor für Elektrochemie Paul Scherrer Institut
Hochschule Paul Scherrer Institut - PSI
Hauptdisziplin Physikalische Chemie
Beginn/Ende 01.01.2014 - 31.12.2016
Bewilligter Betrag 598'759.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Physikalische Chemie
Materialwissenschaften

Keywords (6)

catalysis; perovskite; band structure; interface; electrolyzer; fuel cell

Lay Summary (Italienisch)

Lead
Le celle a combustibile sono dispositivi capaci di convertire l’energia chimica di reagenti, come idrogeno ed ossigeno, in energia elettrica con buone prestazioni e senza l’emissione di sostanze nocive. Di conseguenza, grande interesse è stato rivolto alla produzione di idrogeno tramite celle elettrolitiche. Le celle elettrolitiche possono essere descritte come celle a combustibile in cui la reazione principale avviene in senso opposto, consumando energia per produrre idrogeno ed ossigeno.
Lay summary
Soggetto e obiettivoIl componente che piu’ limita le prestazioni di celle elettrolitiche ed a combustibile è l’elettrodo nel quale avvengono le reazioni di elettrocatalisi dell’ossigeno. Lo sviluppo di un elettrodo di materiale economico, stabilie nel tempo, e con buone prestazioni potrebbe dunque promuovere una rapida commercializzazione di tali dispositivi. Materiali ossidi di natura perovskitica possiedono buone potenzialita’ come elettrodi. Per questa ragione il presente progetto ha lo scopo di investigare tali materiali, sviluppando una conoscenza comprensiva delle loro proprietà catalitiche. La prinicipale innovazione del presente progetto rispetto allo stato dell’arte consiste nello studio approfondito della proprieta’ di superficie di tali materiali.  Contesto socio-scientificoDopo la decisione di terminare l’uso delle centrali nucleari in Svizzera, grande attenzione è stata rivolta verso l’uso di fonti rinnovabili. L’energia da fonti rinnovabili è pero’ prodotta in maniera discontinua e necessita di sistemi di stoccaggio. Utilizzando una cella elettrolitica l’energia elettrica prodotta da fonti rinnovabili puo’ essere immagazzinata tramite idrogeno ed ossigeno, i quali posso poi essere riutilizzati per produrre energia dove e quando è necessaria tramite una cella a combustibile.
Direktlink auf Lay Summary Letzte Aktualisierung: 21.08.2013

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
Electrochemical Flow-Cell Setup for In Situ X-ray Investigations I. Cell for SAXS and XAS at Synchrotron Facilities
(2016), Electrochemical Flow-Cell Setup for In Situ X-ray Investigations I. Cell for SAXS and XAS at Synchrotron Facilities, in Journal of The Electrochemical Society, 163 (10), H906.
Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity
(2015), Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity, in Journal of the Electrochemical Society, 162(6), F579-F586.
Silicone Nanofilament Supported Nickel Oxide: A New Concept for Oxygen Evolution Catalysts in Water Electrolyzers
(2015), Silicone Nanofilament Supported Nickel Oxide: A New Concept for Oxygen Evolution Catalysts in Water Electrolyzers, in ADVANCED MATERIALS INTERFACES, 2(12), 1500216.
Superior Bifunctional Electrocatalytic Activity of Ba0.5Sr0.5Co0.8Fe0.2O3-/Carbon
(2015), Superior Bifunctional Electrocatalytic Activity of Ba0.5Sr0.5Co0.8Fe0.2O3-/Carbon, in Advanced Energy Materials, 5, 1402033.
Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts
(2015), Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts, in Scientific Reports, 5, 12167.
Composite Electrode Boosts the Activity of Ba0.5Sr0.5Co0.8Fe0.2O3‑δ Perovskite and Carbon toward Oxygen Reduction in Alkaline Media
(2014), Composite Electrode Boosts the Activity of Ba0.5Sr0.5Co0.8Fe0.2O3‑δ Perovskite and Carbon toward Oxygen Reduction in Alkaline Media, in ACS Catalalysis, 4, 1061.
Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
(2014), Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, in Catalalysis Science and Technology, 4, 3800.
Highly active Ba0.5Sr0.5Co0.8Fe0.2O3-σ Single material electrode towards the oxygen evolution reaction for alkaline water splitting applications
(2014), Highly active Ba0.5Sr0.5Co0.8Fe0.2O3-σ Single material electrode towards the oxygen evolution reaction for alkaline water splitting applications, in ECS Transactions, 69(17), 869-875.
Low-temperature solid-oxide fuel cells based on proton-conducting electrolytes
(2014), Low-temperature solid-oxide fuel cells based on proton-conducting electrolytes, in MRS BULLETIN, 39(9), 792-797.
Unraveling the Oxygen Reduction Reaction Mechanism and Activity of d-Band Perovskite Electrocatalysts for Low Temperature Alkaline Fuel Cells
(2014), Unraveling the Oxygen Reduction Reaction Mechanism and Activity of d-Band Perovskite Electrocatalysts for Low Temperature Alkaline Fuel Cells, in ECS Transactions, 64, 1081.
Interfacial Effects on the Catalysis of the Hydrogen Evolution, Oxygen Evolution and CO2-Reduction Reactions for (co)Electrolyzer Development
, Interfacial Effects on the Catalysis of the Hydrogen Evolution, Oxygen Evolution and CO2-Reduction Reactions for (co)Electrolyzer Development, in Nano Energy.
The oxygen evolution reaction on La1-xSrxCoO3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties
, The oxygen evolution reaction on La1-xSrxCoO3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties, in Chemistry of Materials.

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
Thomas Graule EMPA Schweiz (Europa)
- Publikation
- Forschungsinfrastrukturen
Paul Scherrer Institut (PSI), Swiss Light Source (SLS), SuperXAS beamline Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
École polytechnique fédérale de Lausanne (EPFL), Laboratory of theory and simulation of materials Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
University of Cape Town Südafrika (Republik) (Afrika)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Austausch von Mitarbeitern

Wissenschaftliche Veranstaltungen

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
EMRS Fall meeting Vortrag im Rahmen einer Tagung Oxide electrocatalysts for application in fuel cells and electrolyzers 19.09.2016 warsaw, Polen Fabbri Emiliana;
66th Annual Meeting of the International Society of Electrochemistry Vortrag im Rahmen einer Tagung The oxygen evolution reaction on La1-xSrxCoO3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties 04.10.2015 Taipei, Taiwan Cheng Xi;
Workshop at the Technical University of Denmark (DTU), Risø campus Einzelvortrag Challenges towards the development of metal oxide electrocatalysts as oxygen electrodes in polymer electrolyte and alkaline water electrolyzers 10.08.2015 Roskilde , Dänemark Fabbri Emiliana;
Materials Research Society (MRS) Fall Meeting Vortrag im Rahmen einer Tagung Low temperature fuel cell developments for a sustainable hydrogen-based-economy 30.11.2014 Boston, Vereinigte Staaten von Amerika Cheng Xi; Fabbri Emiliana;
226rd Electrochemical Society (ECS) meeting, 2014 Vortrag im Rahmen einer Tagung Unraveling the Oxygen Reduction Reaction Mechanism and Activity of d-Band Perovskite Electrocatalysts for Low Temperature Alkaline Fuel Cells 05.10.2014 Cancun, Mexiko Fabbri Emiliana;
International Society of Electrochemistry (ISE) meeting 2014 Poster Study of the oxygen evolution/reduction reaction mechanism and activity of Perovskite La1-xSrxCoO3-based electrodes in alkaline media by thin film rotating ring disk electrode measurements 31.08.2014 Lausanne, Schweiz Cheng Xi; Fabbri Emiliana;
Swiss-Japan Energy Technology Research Workshop Vortrag im Rahmen einer Tagung Perovskite oxides as electrocatalyst materials for low temperature alkaline fuel cells and electrolyzers 07.03.2014 Gstaad, Schweiz Fabbri Emiliana;


Selber organisiert

Titel Datum Ort
Material Research Society (MRS) Fall meeting, Symposium S: Advances in Materials Science, Processing, and Engineering for Fuel Cells and Electrolyzers 30.11.2014 Boston, Vereinigte Staaten von Amerika

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
171426 Designing novel electrocatalysts for fuel cells and electrolyzers by tailoring perovskite surface properties 01.01.2017 Ambizione

Abstract

Fuel cell and electrolyzers can represent a mid term solution to the present need for a sustainable energy economy. Particularly, after the decision to terminate in few years the operation of the nuclear power plants in Germany and in Switzerland, the development and commercialization of more efficient energy production and conversion systems has become a stringent requirement. Within this scenario, fuel cells and electrolyzers can be combined with renewable energy resources to build up a novel and sustainable energy economy based on power grids. Fuel cells are electrochemical devices converting chemical energy of reactants, such as H2 and O2, into electrical energy with high efficiency and low emissions. For these reasons they have attracted much attention as promising power sources for stationary and automotive applications. The need for H2 as fuel has raised more and more the interest in water electrolyzers, which can be considered fuel cells optimized for operating in reverse mode, i.e. consuming electricity to generate H2 and O2. One of the main drawbacks which hinders low temperature fuel cells and electrolyzers commercialization is the high costs of these devices. A considerable decrease in their costs can be achieved by developing non-noble metal electrocatalysts able to provide high catalytic activity towards the oxygen reduction and evolution reaction (fuel cell and electrolyzer mode, respectively). Recent publications have shown that perovskite oxides posses rather high catalytic activity both towards oxygen reduction and evolution reaction in alkaline media, and thus they can be potential catalyst candidates for low temperature alkaline fuel cells and electrolyzers. Furthermore, perovskites posses the particular feature that their electronic properties can be varied in a controlled fashion by substituting the cations in the ABO3 structure with different elements, allowing a wide range of composition to be explored. However, the published investigations mostly correlate the bulk electronic structure of the oxides with their catalytic activity. The present project aims to deeply investigate the factor governing the catalytic processes occurring at the surface of these perovskite catalysts. Particularly, we want to integrate electronic structure concepts and electrochemical interface properties into a model for the understanding of perovskite catalysis properties. Compared to state-of-the-art, the novelty of the present research project lies in the emphasis pointed towards the fundamental importance of disclosing basic properties at the electrochemical interface level. Indeed, what generally is not considered in most of the investigations concerning perovskites as catalyst materials in liquid media is that, being the ORR and OER solely a surface process, their catalytic activity is mostly governed by the electrochemical interface properties. While the importance of surface states and surface descriptors has been for the last thirty years a central concept in the development of superior metal electrocatalysts, the corresponding observation for perovskite catalysts operating in liquid media is to date practically absent. Particularly, analyzing the early and more recent literature on perovskite application as catalysts, a gap exists between the correlation of the bulk electronic properties and the electrocatalytic activity, which is indeed only directly correlated to surface properties. With the present project we aim to bridge this gap, understanding how the electronic band structure of the oxide influences the properties of the electrochemical interface created when the oxide is in contact with a liquid media and under an applied potential. The further step aims to identify the electrochemical interface properties which represent the main descriptors for the catalytic activity of this class of materials. This will lead not only to a significant contribution in the understanding of the factors that control selectivity and reaction rates at the surface of these materials, but it will also allow identifying the design principles able to tailor new functional materials.
-