Project
Back to overview
Isotopic constraints on seasonal N2O dynamics in marine and lacustrine environments
English title |
Isotopic constraints on seasonal N2O dynamics in marine and lacustrine environments |
Applicant |
Lehmann Moritz
|
Number |
147106 |
Funding scheme |
Project funding (Div. I-III)
|
Research institution |
Institut für Umweltgeowissenschaften Universität Basel
|
Institution of higher education |
University of Basel - BS |
Main discipline |
Oceanography |
Start/End |
01.04.2013 - 31.03.2015 |
Approved amount |
211'003.00 |
Show all
All Disciplines (3)
Hydrology, Limnology, Glaciology |
Keywords (9)
ammonia oxidation; Lake Lugano; nitrogen isotopes; denitrification; nitrification; nitrous oxide; Benguela; upwelling zones; nitrifier denitrification
Lay Summary (German)
Lead
|
Lachgas (N2O) ist ein wichtiges und langlebiges Treibhausgas, dessen anthropogene und natürliche Quellen recht gut bekannt sind (7 bzw. 11 Tg N/yr). Grosse Unsicherheiten bestehen jedoch bezüglich der jeweiligen Anteile terrestrischer gegenüber aquatischer Quellen an den Gesamt-Lachgasemissionen sowie der biogeochemischen Mechanismen welche die N2O Produktion in aquatischen Systemen steuern.
|
Lay summary
|
Unser übergeordnetes Ziel ist, zu einem verbesserten Verständnis von Lachgasproduktion durch verschiedene Mikroorganismen in marinen und lakustrinen Umweltsystemen mit saisonal stark variierenden Umweltbedingungen beizutragen. Unsere Studiengebiete sind: der Luganersee (Schweiz) sowie das hoch-produktive Auftriebsgebiet vor der Küste Namibias. Im Detail sollen folgende Fragen beantwortet werden: - Welche Anteile der Gesamt-Lachgasproktion können jeweils den Prozessen Ammoniumoxidation, Nitrifikanten-Denitrifizierung und Denitrifizierung in den beiden Studiengebieten zugeordnet werden?
- Welche biogeochemischen Faktoren (e.g., pH, O2) sind primär für die Steuerung von Nitrifikanten-Denitrifizierungsraten verantwortlich, und gibt es sytematische Unterschiede zwischen marinen und lakustrinen Milieus?
- Gibt es direkte und diagnostisch verwertbare Zusammenhänge zwischen den Konzentrationen und Isotopenzusammensetzungen von N2O, NO2-, NO3-, and NH4+ und den gemessenen N2O Umsatzraten in den Studiengebieten?
In beiden Studiengebieten werden mittels 15N-Tracermethoden N2O-Produktionsraten sowie Schlüsselparameter wie pH, Chlorophyll a, Sauerstoffkonzentration (O2) und Konzentrationen und Sickstoffisotopenverhältnisse anorganisch-gelöster Stickstoffverbindungen gemessen mit dem Ziel, Lachgasproduktionsmechanismen und relevante Kontrollfaktoren besser zu beleuchten. Unsere Arbeit wird neue und wichtige Informationen bezüglich der Rolle von Auftriebsgebieten und produktiven Seen in globalen N2O Budgets liefern. Auch wird sie neue Erkenntnisse über einen bisher von wissenschaftlichen Studien eher wenig berücksichtigten aber im globalen Stickstoffkreislauf vermutlich überaus wichtigen Prozess, der Nitrifikanten-Denitrifizierung, erlauben.
|
Responsible applicant and co-applicants
Employees
Publications
Wenk Christine B., Frame Caitlin H., Koba Keisuke, Casciotti Karen L., Veronesi Mauro, Niemann Helge, Schubert Carsten J., Yoshida Naohiro, Toyoda Sakae, Makabe Akiko, Zopfi Jakob, Lehmann Moritz F. (2016), Differential N 2 O dynamics in two oxygen-deficient lake basins revealed by stable isotope and isotopomer distributions Differential N 2 O Dynamics in Two Lake Basins, in
Limnology and Oceanography, 61(5), 1735-1749.
Freymond Chantal, Wenk Christine, Frame Caitlin, Lehmann Moritz (2013), Year-round N2O production by benthic NOx reduction in a monomictic south-alpine lake, in
Biogeosciences, 10, 8373-8383.
Collaboration
University of Hamburg (Prof. Dr. K. Emeis) |
Germany (Europe) |
|
- Research Infrastructure |
LSA Lugano/FH Lugano (Dr. M. Veronesi and Dr. M. Simona) |
Switzerland (Europe) |
|
- in-depth/constructive exchanges on approaches, methods or results - Publication - Research Infrastructure |
University of Southern Denmark (Odense) (Prof. B. Thamdrup, Dr. L. Bristow) |
Denmark (Europe) |
|
- in-depth/constructive exchanges on approaches, methods or results - Publication - Research Infrastructure |
Scientific events
Active participation
Title |
Type of contribution |
Title of article or contribution |
Date |
Place |
Persons involved |
Fall Meeting of the American Geophysical Union
|
Poster
|
N2O production by nitri er denitri cation in the Benguela Upwelling System
|
07.12.2014
|
San Francisco, United States of America
|
Frame Caitlin;
|
Fall Meeting of the American Geophysical Union
|
Poster
|
Lake acidification and oxygen depletion may synergistically enhance nitrous oxide (N2O) production by nitrifier denitrification in a subalpine lake
|
08.12.2013
|
San Francisco, United States of America
|
Frame Caitlin;
|
Associated projects
Number |
Title |
Start |
Funding scheme |
129491
|
Nitrogen elimination pathways and associated isotope effects in Swiss eutrophic Lake Lugano |
01.04.2010 |
Project funding (Div. I-III) |
159197
|
Environmental controls on N2O production by ammonium oxidizing bacteria in marine and lacustrine environments - a stable isotopic approach |
01.04.2015 |
Project funding (Div. I-III) |
170876
|
Advanced understanding of autotrophic nitrogen removal and associated N2O emissions in mixed nitritation-anammox systems through combined stable ISOtopic and MOLecular constraints (ISOMOL) |
01.09.2017 |
Sinergia |
153055
|
Seasonal Dynamics of Coupled Nitrogen, Sulfur, and Carbon Cycling in Redox Transition Zones of Lake Lugano |
01.11.2014 |
Project funding (Div. I-III) |
Abstract
Nitrous oxide (N2O) is now the third largest contributor to radiative forcing of the long-lived greenhouse gases. Human inputs of nitrogen (N), mainly as fertilizers, have stimulated the microbial N cycle transformations that are the dominant source of N2O. The partitioning between the anthropogenic and natural N2O sources is relatively well constrained at 7 and 11 Tg N/yr, respectively. However, large uncertainties remain in the relative contributions of terrestrial versus aquatic environments and with regards to the underlying biogeochemical controls on microbial N2O production. Such uncertainties present challenges for those devising and implementing N2O emissions policies, and make it difficult to interpret prehistoric atmospheric N2O fluctuations and predict the response of N2O production rates to future climate change.Aquatic N2O fluxes are often highly variable through time and space. The variation is likely modulated by fluctuations in the biogeochemical conditions, which may affect microbial N2O production pathways differentially. N2O can be produced by several processes, such as microbial nitrification (ammonia oxidation), denitrification, and nitrifier-denitrification, and multiple groups of microorganisms are involved. Yet, the exact environmental controls on temporal/spatial variations in net N2O production and the balance between the different pathways are still poorly constrained. It is highly probable that changes in the microbial processes that generate N2O are closely linked to seasonal changes in water productivity, organic matter remineralization rates, and in turn water-column redox-conditions.In this study we propose using incubation-based stable N-isotope tracer methods and natural N isotope measurements in dissolved N2O to identify and quantify specific N2O production pathways in two aquatic environments with strong seasonal N cycle dynamics: eutrophic Lake Lugano in southern Switzerland and the highly productive Benguela Upwelling region along the coast of southwestern Africa. Our main goals will be to shed light on the dynamics and controls on N2O production in two comparable environments. Within the frame of one postdoctoral project we propose to address the following research questions:•How much do ammonia oxidation, nitrifier-denitrification, and denitrification, respectively, contribute to N2O formation in Lake Lugano and the Benguela Upwelling?•Which biogeochemical factors control nitrifier-denitrification rates, and are there systematic differences between the marine and freshwater environment?•How do the concentrations and stable isotopic signatures of N2O, NO2-, NO3-, and NH4+ observed in Lake Lugano and the Benguela Upwelling zone relate to the rates of the studied pathways?In both environments, key variables, such as water pH, chlorophyll a, oxygen (O2), and dissolved inorganic N concentrations, will be measured, and some of these parameters will be manipulated in incubations to study their impacts on N2O production rates. Combining natural abundance N2O isotope measurements and N2O turnover measurements, and integrating the results in a 1-D geochemical model (for Lake Lugano) we attempt to gain information on the N and O isotope effects that are associated with N2O cycling processes. Measurements of the isotope effects and isotopic signatures associated with N2O production by natural microbial communities are valuable biogeochemical information because they allow detection of N cycle transformation processes in environments where direct rate measurements cannot be made. Our study is designed to capture the temporal dynamics associated with N2O production in both aquatic environments. The University of Basel has been invited to join two research cruises (R/V Meteor) to the Benguela Upwelling zone that are scheduled for the seasonal maximum in upwelling intensity (September 2013) and the minimum (February 2014). The upcoming cruises will provide a unique opportunity to identify seasonal change in biological N2O production mechanisms and rates, as well as the physical parameters that affect sea-to-air fluxes of N2O.The research proposed here will result in a detailed characterization of seasonal cycles in N2O biogeochemistry. The study in Lugano has been designed to produce clear information for water resource managers describing the aspects of water quality that most influence N2O emissions in nutrient-impacted lakes. The Benguela cruises will provide maximum and minimum N2O flux constraints on this geochemically important upwelling region. Both studies will be used to provide new information about the controls on aquatic N2O that are needed to accurately model the global dynamics of this powerful greenhouse gas.
-