Project

Back to overview

Electronic Structure of Three-Dimensional Correlated Systems by Soft-X-Ray ARPES

Applicant Strokov Vladimir
Number 146890
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.12.2013 - 31.05.2016
Approved amount 249'412.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Material Sciences

Keywords (7)

iron pnictides; correlated electron systems; resonant photoemission; spin density waves; quantum instabilities; soft-X-ray ARPES; three-dimensional electronic structure

Lay Summary (French)

Lead
Les fortes corrélations électroniques sont à l´avant-garde de la recherche de la matière condensée moderne. Elles sont à l´origine de la supraconductivité à haute température critique (HTSC) et d'autres phénomènes importants pour leur application. Bien que la force des corrélations se réduise avec la dimensionnalité, dans beaucoup de systèmes tridimensionnels (3D) les corrélations jouent un rôle crucial, par exemple, la magnétorésistance colossale dans les oxydes de manganèse.
Lay summary

La spectroscopie de photoémission résolue en angle (ARPES) peut être vue comme un microscope pour imager les électrons dans l'espace 3D de leur vecteur d´onde k. Les expériences utilisant des énergies de rayons X d´environ 1 keV profitent de leur capacité de sonder plus profondément dans le volume du cristal, permettant une navigation intrinsèquement plus précise dans l'espace 3D des vecteurs k, comparativement aux énergies conventionnelles en ARPES d´environ 100 eV. Ces expériences exigent une instrumentation de rayonnement synchrotron avancée qui est devenue très récemment disponible à la ligne de lumière la plus brillante du monde, ADRESS, au Swiss Light Source. Nous y utilisons l´ARPES par rayons X mous pour explorer quelques-uns des systèmes paradigmatiques 3D fortement corrélés : l'isolant de transfert de charge NiO, le métal à onde de densité de charge chrome et les nouveaux pnictides HTSCs de la famille BaFe2As2.

Notre recherche améliorera la connaissance fondamentale des effets de la troisième dimension sur physique des corrélations électroniques. En perspective, cela aidera le développement de la technologie d'état solide pour créer de nouvelles générations de matériaux fonctionnels basés sur les fortes corrélations électroniques telles que les HTSCs avec leur promesse de transport du courant électrique sans pertes.
Direct link to Lay Summary Last update: 28.03.2013

Lay Summary (English)

Lead
Strong electron correlations are the forefront of the nowadays condensed matter research. They give rise to high-temperature superconductivity (HTSC), charge and spin density waves and other interesting and practically important phenomena. Although the correlation strength decreases with dimensionality, in many three-dimensional (3D) systems the correlations play the crucial role, for example, in colossal magnetoresistance manganates with their applications for high-capacity hard drives.
Lay summary

Angle-resolved photoelectron spectroscopy (ARPES) can be viewed as a microsope to image the electrons in 3D space of their momenta k. Experiments at soft-X-ray photon energies around 1 keV benefit from their ability to look deeper into the crystal bulk and enabling intrinsically more precise navigation in the 3D momentum space compared to the conventional ARPES energies around 100 eV. These experiments require advanced synchrotron radiation instrumentation which has most recently become available at the worldwide brightest ADRESS beamline of Swiss Light Source. We apply soft-X-ray ARPES to a explore a few paradigm 3D strongly correlated systems: the charge-transfer insulator NiO, spin-density-wave metal Chromium, and new pnictide HTSCs of the BaFe2As2 family.

This research will improve the fundamental knowledge about the effects of the third dimension in the physics of electron correlations. In a perspective, this will help development of solid state technology to create new generations of functional materials based on strong electron correlations such as the HTSCs promising lossless electric power transportation.
Direct link to Lay Summary Last update: 28.03.2013

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Electron-polaron dichotomy of charge carriers in perovskite oxides
Husanu M.-A., Vistoli L., Verdi C., Sander A., Garcia V., Rault J., Bisti F., Lev L. L., Schmitt T., Giustino F., Mishchenko A. S., Bibes M., Strocov V. N. (2020), Electron-polaron dichotomy of charge carriers in perovskite oxides, in Communications Physics, 3(1), 62-62.
Electronic phase separation at LaAlO3/SrTiO3 interfaces tunable by oxygen deficiency
Strocov V. N., Chikina A., Caputo M., Husanu M.-A., Bisti F., Bracher D., Schmitt T., Miletto Granozio F., Vaz C. A. F., Lechermann F. (2019), Electronic phase separation at LaAlO3/SrTiO3 interfaces tunable by oxygen deficiency, in Physical Review Materials, 3(10), 106001-106001.
Band Dependent Interlayer f -Electron Hybridization in CeRhIn5
Chen Q. Y., Xu D. F., Niu X. H., Peng R., Xu H. C., Wen C. H. P., Liu X., Shu L., Tan S. Y., Lai X. C., Zhang Y. J., Lee H., Strocov V. N., Bisti F., Dudin P., Zhu J.-X., Yuan H. Q., Kirchner S., Feng D. L. (2018), Band Dependent Interlayer f -Electron Hybridization in CeRhIn5, in Physical Review Letters, 120(6), 066403-066403.
Weakly-Correlated Nature of Ferromagnetism in Nonsymmorphic CrO2 Revealed by Bulk-Sensitive Soft-X-Ray ARPES
Bisti F., Rogalev V. A., Karolak M., Paul S., Gupta A., Schmitt T., Güntherodt G., Eyert V., Sangiovanni G., Profeta G., Strocov V. N. (2017), Weakly-Correlated Nature of Ferromagnetism in Nonsymmorphic CrO2 Revealed by Bulk-Sensitive Soft-X-Ray ARPES, in Physical Review X, 7(4), 041067-041067.
Fermi surface and effective masses in photoemission response of the (Ba1−x K x )Fe2As2 superconductor
Derondeau Gerald, Bisti Federico, Kobayashi Masaki, Braun Jürgen, Ebert Hubert, Rogalev Victor A., Shi Ming, Schmitt Thorsten, Ma Junzhang, Ding Hong, Strocov Vladimir N., Minár Ján (2017), Fermi surface and effective masses in photoemission response of the (Ba1−x K x )Fe2As2 superconductor, in Scientific Reports, 7(1), 8787-8787.
Direct observation of how the heavy-fermion state develops in CeCoIn5
Chen Q. Y., Xu D. F., Niu X. H., Jiang J., Peng R., Xu H. C., Wen C. H. P., Ding Z. F., Huang K., Shu L., Zhang Y. J., Lee H., Strocov V. N., Shi M., Bisti F., Schmitt T., Huang Y. B., Dudin P., Lai X. C., Kirchner S., Yuan H. Q., Feng D. L. (2017), Direct observation of how the heavy-fermion state develops in CeCoIn5, in Physical Review B, 96(4), 045107-045107.
Electronic band structure of the buried SiO 2 /SiC interface investigated by soft x-ray ARPES
Woerle J., Bisti F., Husanu M.-A., Strocov V. N., Schneider C. W., Sigg H., Gobrecht J., Grossner U., Camarda M. (2017), Electronic band structure of the buried SiO 2 /SiC interface investigated by soft x-ray ARPES, in Applied Physics Letters, 110(13), 132101-132101.
Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals
Xu N., Autès G., Matt C. E., Lv B. Q., Yao M. Y., Bisti F., Strocov V. N., Gawryluk D., Pomjakushina E., Conder K., Plumb N. C., Radovic M., Qian T., Yazyev O. V., Mesot J., Ding H., Shi M. (2017), Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals, in Physical Review Letters, 118(10), 106406-106406.
Band structure of the EuO/Si interface: justification for silicon spintronics
Lev L. L., Averyanov D. V., Tokmachev A. M., Bisti F., Rogalev V. A., Strocov V. N., Storchak V. G. (2017), Band structure of the EuO/Si interface: justification for silicon spintronics, in Journal of Materials Chemistry C, 5(1), 192-200.
Electronic structure of buried LaNiO 3 layers in (111)-oriented LaNiO 3 /LaMnO 3 superlattices probed by soft x-ray ARPES
Bruno F. Y., Gibert M., McKeown Walker S., Peil O. E., de la Torre A., Riccò S., Wang Z., Catalano S., Tamai A., Bisti F., Strocov V. N., Triscone J.-M., Baumberger F. (2017), Electronic structure of buried LaNiO 3 layers in (111)-oriented LaNiO 3 /LaMnO 3 superlattices probed by soft x-ray ARPES, in APL Materials, 5(1), 016101-016101.
Evidence for a Strong Topological Insulator Phase in ZrTe5
Manzoni G., Gragnaniello L., Autès G., Kuhn T., Sterzi A., Cilento F., Zacchigna M., Enenkel V., Vobornik I., Barba L., Bisti F., Bugnon Ph., Magrez A., Strocov V. N., Berger H., Yazyev O. V., Fonin M., Parmigiani F., Crepaldi A. (2016), Evidence for a Strong Topological Insulator Phase in ZrTe5, in Physical Review Letters, 117(23), 237601-237601.
Disentangling bulk and surface Rashba effects in ferroelectric α -GeTe
Krempaský J., Volfová H., Muff S., Pilet N., Landolt G., Radović M., Shi M., Kriegner D., Holý V., Braun J., Ebert H., Bisti F., Rogalev V. A., Strocov V. N., Springholz G., Minár J., Dil J. H. (2016), Disentangling bulk and surface Rashba effects in ferroelectric α -GeTe, in Physical Review B, 94(20), 205111-205111.
Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors
Krempaský J., Muff S., Bisti F., Fanciulli M., Volfová H., Weber A. P., Pilet N., Warnicke P., Ebert H., Braun J., Bertran F., Volobuev V. V., Minár J., Springholz G., Dil J. H., Strocov V. N. (2016), Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors, in Nature Communications, 7, 13071-13071.
NaFe0.56Cu0.44As : A Pnictide Insulating Phase Induced by On-Site Coulomb Interaction
Matt C. E., Xu N., Lv Baiqing, Ma Junzhang, Bisti F., Park J., Shang T., Cao Chongde, Song Yu, Nevidomskyy Andriy H., Dai Pengcheng, Patthey L., Plumb N. C., Radovic M., Mesot J., Shi M. (2016), NaFe0.56Cu0.44As : A Pnictide Insulating Phase Induced by On-Site Coulomb Interaction, in Physical Review Letters, 117(9), 097001-097001.
Observation of Weyl nodes and Fermi arcs in tantalum phosphide
Xu N., Weng H. M., Lv B. Q., Matt C. E., Park J., Bisti F., Strocov V. N., Gawryluk D., Pomjakushina E., Conder K., Plumb N. C., Radovic M., Autès G., Yazyev O. V., Fang Z., Dai X., Qian T., Mesot J., Ding H., Shi M. (2016), Observation of Weyl nodes and Fermi arcs in tantalum phosphide, in Nature Communications, 7, 11006-11006.
Band Structure of EuO/Si Spin Contact: Justification for Silicon Spintronics
Lev L.L. et al. (2016), Band Structure of EuO/Si Spin Contact: Justification for Silicon Spintronics, in arXiv.org (in review with Small), 1603.04666.
Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Rashba semiconductors
Krempasky J. et al. (2016), Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Rashba semiconductors, in arXiV.org (in review with Nature Comm.), 1606.00241.
Fermi surface and effective masses in photoemission response of the (Ba1−xKx)Fe2As2 superconductor
Derondeau G. et al. (2016), Fermi surface and effective masses in photoemission response of the (Ba1−xKx)Fe2As2 superconductor, in arXiv, 1606.08977.
On-site electron correlation nature of CrO2 revealed by bulk sensitive soft-x-ray ARPES
Bisti F. et al. (2016), On-site electron correlation nature of CrO2 revealed by bulk sensitive soft-x-ray ARPES, in arXiv, 1607.01703.
Fermi states and anisotropy of Brillouin zone scattering in the decagonal Al–Ni–Co quasicrystal
Rogalev V. A., Gröning O., Widmer R., Dil J. H., Bisti F., Lev L. L., Schmitt T., Strocov V. N. (2015), Fermi states and anisotropy of Brillouin zone scattering in the decagonal Al–Ni–Co quasicrystal, in Nature Communications, 6(1), 8607-8607.
Observation of Weyl nodes in TaAs
Lv B. Q., Xu N., Weng H. M., Ma J. Z., Richard P., Huang X. C., Zhao L. X., Chen G. F., Matt C. E., Bisti F., Strocov V. N., Mesot J., Fang Z., Dai X., Qian T., Shi M., Ding H. (2015), Observation of Weyl nodes in TaAs, in Nature Physics, 11(9), 724-727.
Surface versus bulk contributions to the giant Rashba splitting in the ferroelectric α-GeTe(111) semiconductor
Krempasky J. et al. (2015), Surface versus bulk contributions to the giant Rashba splitting in the ferroelectric α-GeTe(111) semiconductor, in arXiv.org (in review with Phys. Rev. Lett.), 1503.05004.

Collaboration

Group / person Country
Types of collaboration
Dr. Ming Shi, Paul Scherrer Institute Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Dr. Jan Minar, LMU Muenich Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Hong Ding, Institute of Physics, Chinese Academy of Science China (Asia)
- Publication
- Research Infrastructure
Dr. Hans Sigg, Paul Scherrer Institute Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Jan-Hugo Dil, Paul Scheere Instituite/Uni Zuerich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Dr. Alexander X. Gray, Temple University United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
International Conference on Electron Spectroscopy and Structure (ICESS) 2015 Talk given at a conference Soft-x-ray ARPES investigation of Chromium dioxide: More insight into the electronic correlation 28.09.2015 Stony Brook, New York, United States of America Bisti Federico; Strokov Vladimir;
International workshop on strong correlations and angle-resolved photoemission spectroscopy (CORPES) 2015 Talk given at a conference Soft-x-ray ARPES investigation of CrO2: More insight into the electronic correlation 05.07.2015 Paris, France Strokov Vladimir; Bisti Federico;
International workshop on strong correlations and angle-resolved photoemission spectroscopy (CORPES) 2015 Poster Antiferromagnetic order and spin density wave in bulk Chromium explored by soft-X-ray ARPES 05.07.2015 Paris, France Strokov Vladimir;
New Generation in Strongly Correlated Electron Systems (NGSCES) 2014 Poster Antiferromagnetic order and spin density wave in bulk Chromium explored by soft-X-ray ARPES 16.06.2014 Nice, France Bisti Federico; Strokov Vladimir;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Practicum on soft-X-ray ARPES in the framework of HERCULES School 2016 Performances, exhibitions (e.g. for education institutions) 11.04.2016 Villigen-PSI, Switzerland Bisti Federico; Strokov Vladimir;
Practicum on soft-X-ray ARPES in the framework of 14th PSI Summer School on Condensed Matter Research 2015 Performances, exhibitions (e.g. for education institutions) 22.07.2015 Villigen-PSI, Switzerland Bisti Federico; Strokov Vladimir;
Practicum on soft-X-ray ARPES in the framework of HERCULES School 2015 Performances, exhibitions (e.g. for education institutions) 14.04.2014 Villigen-PSI, Switzerland Strokov Vladimir; Bisti Federico;


Associated projects

Number Title Start Funding scheme
165529 Momentum- and Spin-Resolved Electronic Structure of Buried Oxide Interfaces 01.11.2016 Project funding (Div. I-III)

Abstract

Strong electron correlations in condensed matter give rise to a variety of interesting and practically important phenomena such as high-temperature superconductivity, quantum instabilities like charge and spin density waves, etc. Although the strength of electron correlations in general decreases with increase of dimensionality, there is an abundance of three-dimensional (3D) systems where the correlations play a crucial role, for example, the perovskite La1-xSrxMnO3 showing colossal magnetoresistance.Angle-resolved photoelectron spectroscopy (ARPES) is the main experimental tool to explore the electronic structure with resolution in 3D momentum k. Most important benefits of pushing the ARPES experiment into the soft-X-ray energy range around 1 keV are (1) increase in the photoelectron escape depth, resulting in a boost of bulk sensitivity, and (2) concomitant improvement in the intrinsic definition of the surface-perpendicular momentum. Until recently the development of soft-X-ray ARPES (SX-ARPES) was impeded by a drop of the photoexcitation cross-section by 2-3 orders of magnitude compared to the conventional ARPES. We are breaking through this problem using the soft-X-ray ADRESS beamline at Swiss Light Source (SLS) delivering exceptionally high photon flux. We illustrate the power of SX-ARPES performed with our advanced instrumentation with a few examples, demonstrating the probing depth increase, unparalleled definition of the 3D electronic structure, disentangling correlation phenomena in the bulk and resonant photoemission to identify the elemental character of the bands.Here, we propose to apply SX-ARPES to a few 3D correlated systems: (1) NiO as a paradigm strongly correlated charge-transfer insulator, where we expect to resolve the spectral weight of the Ni and O states in 3D as well as find spectroscopic evidences of the antiferromagnetic (AFM) order; (2) Chromium as a paradigm 3D spin-density-wave (SDW) metal, where we aim understanding of the electronic structure precursors of the SDWs; (3) Pnictides of the BaFe2As2 family, where disentanglement of peculiar matrix elements will allow unambiguous determination of the 3D effects, and spin-resolved measurements bring first information on the AFM order. In a broader perspective, our research will improve the fundamental knowledge about the effects of the third dimension in the physics of electron correlations. We hereby apply for funds to hire a postdoc researcher as a prime investigator in the framework of this proposal.
-