Project

Back to overview

Fibres Optoélectroniques Nano-structurées

English title Nano-structured Optoelectronic Fiber Devices
Applicant Sorin Fabien
Number 146871
Funding scheme Project funding (Div. I-III)
Research institution Laboratoire des fibres et matériaux photoniques EPFL - STI - IMX - FIMAP
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.09.2013 - 31.08.2016
Approved amount 191'736.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Microelectronics. Optoelectronics

Keywords (6)

Fibre materials and processing; multimaterial fibres; Optoelectonic devices; semiconducting micro- and nanowires; Annealing and grain boundaries; Charge transport in semiconductors

Lay Summary (French)

Lead
Les composants photoniques prennent une place de plus en plus importante dans la recherche scientifique et au quotidien. Jusqu’à récemment, leurs techniques de fabrication ont été conçues pour des substrats rigides et de petites tailles. De nombreuses applications modernes, telles que les énergies renouvelables ou des techniques de soins médicaux innovants, nécessitent cependant de réaliser de tels composants sur de grandes surfaces, sur des substrats flexibles ou même des tissus intelligents.
Lay summary

Contenu et objectif du travail de recherche

Notre objectif principal est d’étudier une technique de fabrication récente pour intégrer des composants optoélectroniques efficaces et à base de micro- et nano-fils semi-conducteurs, dans des fibres minces, flexibles, et de plusieurs kilomètres de long. Ces fibres, pouvant agir comme détecteurs ou même comme capteurs de l’énergie solaire, par exemple, peuvent être déployées seules ou intégrées dans des mailles fonctionnelles ou des tissus. Ce projet permettra de mieux comprendre la microstructure et les propriétés électriques et optoélectroniques des éléments semi-conducteurs intégrés dans ces fibres dites « multi-matériaux ». De plus, nous proposerons de nouvelles méthodes de fabrication pour fabriquer des composants fibrés à base de micro-, voir nano-fils semi-conducteurs, pouvant être contactés électriquement et présentant des rapports d’aspect inégalés. Ceci pourrait améliorer de façon importante les performances de ces fibres optoélectroniques.

Contexte scientifique et social du projet de recherche

Nos résultats permettront d’améliorer le potentiel des fibres optoélectroniques qui ont été proposées pour un nombre important d’applications comme pour des habits intelligents, des détecteurs distribués de différentes natures, des écrans flexibles interactifs ou encore des éléments photovoltaiques flexibles. Tous ces domaines, qui prennent une importance grandissante dans nos sociétés modernes, bénéficieraient d’une telle technologie capable d’apporter des solutions innovantes et à la pointe des technologies de procédés des matériaux et des composants optoélectroniques nano-structurés.

Keywords

Fibre materials and processing ; multimaterial fibres ; optoelectronic devices ; semiconducting micro- and nano-wires ; annealing, grain boundaries, single and polycrystal ; charge transport, trapping and photo-detector responsivity and sensitivity.


Direct link to Lay Summary Last update: 16.08.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices
Schmidt Markus, Argyros Alexander, Fabien Sorin (2016), Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices, in Advanced Optical Materials, 4, 13-36.

Collaboration

Group / person Country
Types of collaboration
Laboratory of Metals Physics and Technology, ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Laboratoire de Génie Electrique de Paris (LGEP) France (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
European Workshop on Optical Fiber Sensors Talk given at a conference Multi-material Optoelectronic Fiber Devices 01.06.2016 Limerick, Ireland Sorin Fabien;
Swiss National Fiber Laboratory (SNFL, Swiss Photonics) Workshop Talk given at a conference Promises of multi-material fiber devices for advanced light delivery systems 09.12.2015 Burdgof, Switzerland Yan Wei;
Ecole Doctorale Science et Génie des Matériaux (EDMX) - Research Day Poster In-fiber Semiconducting Nanowires for High Performance Optoelectronic Devices 23.11.2015 EPFL, Switzerland Yan Wei;
Materials Research Society (MRS) Brazil Talk given at a conference Innovative fabrication approaches of nanostructured photonic systems 30.09.2015 Rio de Janeiro, Brazil Sorin Fabien;
Progress in the Electromagnetics Research Symposium (PIERS) Talk given at a conference Recent development and opportunities of Multi-material optoelectronic fibres 30.08.2014 Guangzhou, China Yan Wei; Sorin Fabien;


Associated projects

Number Title Start Funding scheme
169650 Fibres Optoélectroniques Nano-structurées 01.10.2016 Project funding (Div. I-III)

Abstract

The challenges associated with integrating nanostructured optoelectronic devices over large areas and onto flexible substrates remain for a large part unresolved. Remote and distributed sensing, energy harvesting, functional fabrics, and novel health care systems are among the scientific and technological fields that could significantly benefit from innovative approaches to deploying optoelectronic functionalities, created at the nano-level, across macroscopic scales. Recently, a novel fabrication approach has been proposed that relies on a simple and scalable thermal drawing process to generate very long, thin, and flexible fiber devices. These multimaterial fibers integrate, at prescribed positions and with controlled interfaces, nanostructured materials with widely different optic, electronic, and even acoustic properties. In particular, one-dimensional photo-detecting fibers based on the photo-conducting properties of thin-film semiconductors have been realized. They enable the detection of light over unprecedented length scales and have demonstrated efficacy in different proof-of-concept systems such as optical imaging fabrics and distributed chemical sensing. However, they are still restricted to materials and structures that limit their limits their performance as optoelectronic devices. Much progress must still be made in regards to materials composition, structures, and geometry, in order to improve light harvesting and electronic transport in these thermally-drawn optoelectronic fibers.The proposed project is devoted to the improvement of optoelectronic fibers through two main objectives: (1) developing a deeper understanding of the microstructure and electronic and optoelectronic properties of thermally drawn semiconducting materials; and (2) proposing innovative fabrication approaches for the integration of electrically connected and extremely long semiconducting micro- and nanowires within polymer fibres. To achieve these objectives, we will design a fabrication and characterization platform to allow us to develop a thorough understanding of the relationship between processing conditions and the structure, composition, and optoelectronic properties of the resulting nanostructured materials inside the fibres. This will will result in high performance, nanowire-based flexible photo-detecting fibres, with a strong potential for relevance in a variety of industrial applications.
-