Project

Back to overview

Diameter Modulated, Vertically Aligned Carbon Nanotubes by Temperature Gradient Chemical Vapor Deposition

English title Diameter Modulated, Vertically Aligned Carbon Nanotubes by Temperature Gradient Chemical Vapor Deposition
Applicant Park Hyung Gyu
Number 146856
Funding scheme Project funding (Div. I-III)
Research institution Institut für Energietechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Mechanical Engineering
Start/End 01.04.2013 - 30.09.2016
Approved amount 217'521.00
Show all

All Disciplines (2)

Discipline
Mechanical Engineering
Material Sciences

Keywords (5)

scaled-up synthesis; reacting flow modeling; vertically aligned carbon nanotube; catalyst size matching; temperature gradient chemical vapor deposition

Lay Summary (German)

Lead
Kohlenstoff ist eines der wichtigsten Elemente des Universums und wurde seit Menschengedenken in Form von Diamant und Graphit genutzt. Heute sind verschiedene Arten von Kohlenstoff-Materialien bekannt wie Kohlenstofffasern, amorpher Kohlenstoff, Fullerene, Graphen und Kohlenstoff-Nanoröhren. Die hervorragenden elektrischen, thermischen, mechanischen und chemischen Eigenschaften von Graphen und Kohlenstoff-Nanoröhrchen machen diese Kohlenstoffverbindungen zum Gegenstand der aktiven Forschung.
Lay summary

Vertikal ausgerichtet Kohlenstoff-Nanoröhrchen (VACNT) ermöglichen viele neuartige Anwendungen. Die ausgezeichneten Phänomene im Bereich des Elektronen-, Wärme- und Massentransports können allerdings nur industriell genutzt werden, wenn VACNT mit einer maßgeschneiderten Durchmesser-Verteilung  (z.B. sub 4 nm) und einer hohen Packungsdichte (z. B. über 1013 cm-2) synthetisiert werden können. Trotz der hohen Anzahl der Studien über die Herstellung von VACNT, konnten VACNT bisher noch nicht mit einer optimalen Durchmesserverteilung und Packungsdichte in größerem Massstab hergestellt werden.

Das Ziel unseres Projekts ist die Produktion von durchmesserkontorllierten (<5nm) VACNT auf großflächigen (5-10cm lang) Substraten. Wir wollen den Einfluss der Gas-Pyrolyse und der Größe der Katalyseflächen auf das Wachstum und die Morphologie der CNT verstehen.  Dafür werden wir unsere neu entwickelte, Temperatur Gradienten kontrollierte chemisch Gasphasendeposition (thermal gradient chemical vapor deposition, TGCVD) einsetzen, eine einfache Methode, die es erlaubt, innerhalb des Reaktors die thermische Entwicklung der Gas-Pyrolyse und des Katalysators zu kontrollieren. Eine detaillierte Analyse der thermischen Evolution von Kohlenwasserstoff-Reaktanten in der Gasphase verspricht nicht nur für die Synthese der Kohlenstoff-Nanoröhrchen einen großen Fortschritt, sondern beantwortet auch wichtige Fragen für chemisch reagierenden Strömungen im allgemeinen.

 

Direct link to Lay Summary Last update: 25.03.2013

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Graphene Synthesis by Chemical Vapor Deposition on Copper
Celebi Kemal, Yang Ning, Cole Matthew T., Teo Kenneth B. K., Park Hyung Gyu (2016), Graphene Synthesis by Chemical Vapor Deposition on Copper, in Aliofkhazraei Mahmood , Gervasoni Juana L. , Ozkan Cengiz S. , Mitura Stanislaw , Ali Nasar, Milne William I (ed.), CRC Press, N.A., 225.
Novel Graphene Membranes - Theory and Application
Buchheim Jakob, Wyss Roman M., Kim Chang-Min, Deng Mengmeng, Park Hyung Gyu (2016), Novel Graphene Membranes - Theory and Application, in Singh Rajindar, Hankins Nick (ed.), Elsvier, N.A., 371.

Collaboration

Group / person Country
Types of collaboration
Aerothermochemistry and combustion systems laboratory / ETH Zurich Switzerland (Europe)
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
DPG (German Physics Society) Annual Meeting 2016 - Focus Section: Two Dimensional Functional Materials Talk given at a conference Evolution of Mono- and Bilayer Graphene in Chemical Vapor Deposition and the Thinnest Feasible Porous Membranes for Ultimate Mass Transport 11.03.2016 Regensburg, Germany Park Hyung Gyu;
Carbon 2015 Talk given at a conference Enhanced Growth of Vertical-Aligned Carbon Nanotube by Ultra-thin Metal Adhesion Layer 12.07.2015 Dresden, Germany Yang Ning;
Graphene 2015 Poster Secondary Layer Evolution of Bilayer Graphene on Copper 10.03.2015 Bilbao, Spain Yang Ning;
Euro CVD 2014 Talk given at a conference Evolution of Mono- and Bilayer Graphene in Chemical Vapor Deposition 14.07.2014 Sempach, Switzerland Park Hyung Gyu;
eMRS Talk given at a conference Diameter control of vertically aligned, single-walled carbon nanotubes via chemical treatment of a catalyst support 26.05.2014 Lille, France Yang Ning; Park Hyung Gyu;
eMRS Talk given at a conference Kinetics of Bilayer Graphene Growth on Copper 26.05.2014 Lille, France Yang Ning; Park Hyung Gyu;
eMRS Talk given at a conference Sigmoidal Kinetics of Graphene Growth under Continuous Carbon Supply 26.05.2014 Lille, France Yang Ning; Park Hyung Gyu;
eMRS Poster Activation energy variation in the chemical vapor deposition of carbon nanotubes under temperature gradient 26.05.2014 Lille, France Yang Ning; Park Hyung Gyu;


Associated projects

Number Title Start Funding scheme
137964 Fabrication and Evaluation of Carbon Nanotube Membranes for the Separation of Organic and Inorganic Micropollutants 01.01.2012 Project funding (Div. I-III)

Abstract

Vertically aligned carbon nanotubes (VA-CNTs) pose an excellent opportunity stemming from the properties of one-dimensional graphitic nanotubes, individual and collective, which opens new avenues to the carbon nanotube applications. To fulfill the demands of various target applications, much of the current research has focused on the efficient and controlled synthesis of the carbon nanotube forests, understanding and tailoring many aspects of the growth and characterizing the properties of the resultant structures. We have prepare independent studies on the control of acetylene-based precursor thermal rearrangement and catalyst size matching with the substrate asperities, for the diameter-controlled VA-CNT growth. The chemical vapor deposition (CVD) approach we take bases its unique controllability on the use of dual heaters that can generate temperature gradient in the carbon precursor gas mixture between gas injector and catalysts. This single-chamber setup allowed for various reactions of acetylene thermal rearrangement right atop the catalysts, without potential loss of benign yet shortly living intermediate species. Thereby, we could see potential of controlling the VA-CNT growth rate (efficiency) with additionally possible wall number tailoring, on the thick (20 nm) catalyst system. Independently, catalyst size matching with the substrate asperities showed great feasibility for the CNT diameter control by achieving sub-2-nm diameter control in the millimeter-long VA-CNT with no use of moisture or any other additive.Here, we propose the one-chamber method of enhancing the growth efficiency and diameter control, a method we named temperature gradient (TG) CVD. A systematic study is prepared for probing the VA-CNT growth behavior on sub-1-nm Fe and Fe-Mo catalyst systems in the TG CVD parametric window. Catalyst size matching will be carefully studied to extend the envelope of the method. Reacting flow modeling incorporating more than 200 possible reactions will be carried out in order to probe the gas-phase pyrolysis, well known yet difficult to measure, in a highly cost-effective way. Obtained data and simulation results will allow us to create new knowledge on the diameter-selective VA-CNT growth via the single-chamber TG CVD. We will finally apply this knowledge to the scaled-up synthesis of VA-CNTs up to 10 centimeters in substrate dimension. Success of our project will lend the combined methods of TG CVD and catalyst size matching immediate adaptability to industrial applications in need of VA-CNTs with tailored morphology and properties.
-