Project

Back to overview

Chiral Colloidal Particles via Template Stripping

Applicant Norris David J.
Number 146747
Funding scheme Project funding (Div. I-III)
Research institution Institut für Verfahrenstechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Material Sciences
Start/End 01.05.2013 - 30.04.2016
Approved amount 282'640.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Chemical Engineering

Keywords (4)

colloids; plasmonics; inorganic; chiral

Lay Summary (German)

Lead
Ein Objekt ist chiral wenn es mit seinem Spiegelbild nicht deckgleich ist. Die Herstellung von chiralen Festkörper-Partikel ist eine bestehende, fundamentale Herausforderung. Falls solche Partikel verfügbar wären, könnten diese viele neue und interessante Eigentschaften zeigen. Zum Beispiel sollten aus Silber oder Gold hergestellte chirale Partikel starke optische Effekte zeigen. Die Anwendungen wären vielfältiger Natur wie Katalyse, Optik, Sensoren und Separation.
Lay summary

Für dieses Projekt werden ein Doktorand und Post-Doktorand diese Materialien erforschen. Das Team wird eine neue Strategie entwickeln welche strukturierte Silizium-Wafer zur Partikel-Herstellung verwendet. Dieser Ansatz ist in der Lage Partikel unterschiedlicher Form, Grösse und Materialien zu erzeugen. Das Team wird Partikel im Grössenbereich von ~1 Mikrometer bis zu ~50 Nanometer synthetisieren bestehend aus Metallen, Halbleitern, Oxiden und deren Kombinationen. Nach der Herstellung wird der Fokus darauf bestehen ein fundamentales Verständnis für die Partikel und deren Anwendung zu gewinnen. Dies beinhaltet Untersuchungen von: (i) den optischen Eigeschaften (ii) der Bindung chiraler Moleküle, (iii) die Bewegung chiraler Partikel oder Moleküle in einem Fluid oder einem Kanal chiraler Partikel und (iv) die Fertigung grösserer Strukturen auf Basis chiraler Partikel.

Neben der Ausbildung eines Doktoranden und Post-Doktoranden, erwarten wir ein Verständnis dafür zu bekommen wie chirale Partikel hergestellt werden können und was deren fundamentale Eigenschaften und Anwendungen sind.

Direct link to Lay Summary Last update: 05.04.2013

Lay Summary (English)

Lead
An object has a chiral shape if it cannot be superimposed on its mirror image. The preparation of solid particles with a chiral shape remains a fundamental challenge. If such particles were available, they could exhibit many new and interesting properties. For example, if made from metals such as silver or gold, they should exhibit strong optical phenomena. They could then have uses in many applications, such as catalysis, optics, sensing, and separations.
Lay summary

In this project, a Ph.D. student and a postdoctoral researcher will study these materials. The team will develop a new strategy that exploits patterned silicon wafers to obtain chiral particles. The approach can provide particles of many different shapes, sizes, and materials. The team will pursue particles that range in size from ~1 micrometer to ~50 nanometers made from metals, semiconductors, oxides, and their combinations. Once prepared, the main goal will be to gain fundamental understanding of the particles and their potential applications. This will include investigations of: (i) optical properties, (ii) the binding of chiral molecules, (iii) the motion of chiral particles or molecules through a channel packed with chiral particles, and (iv) the assembly of chiral particles into larger structures.

In addition to the training of a Ph.D student and a postdoctoral researcher, the expected outcome of the project is an understanding of how chiral particles can be prepared, their fundamental properties, and their potential applications.

Direct link to Lay Summary Last update: 05.04.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields
Poulikakos Lisa V., Gutsche Philipp, McPeak Kevin M., Burger Sven, Niegemann Jens, Hafner Christian, Norris David J. (2016), Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields, in ACS Photonics, 3(9), 1619-1625.
Plasmonic Films Can Easily Be Better: Rules and Recipes
McPeak Kevin M., Jayanti Sriharsha V., Kress Stephan J. P., Meyer Stefan, Iotti Stelio, Rossinelli Aurelio, Norris David J. (2015), Plasmonic Films Can Easily Be Better: Rules and Recipes, in ACS Photonics, 2(3), 326-333.
Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection
McPeak Kevin M., van Engers Christian D., Bianchi Sarah, Rossinelli Aurelio, Poulikakos Lisa V., Bernard Laetitia, Herrmann Sven, Kim David K., Burger Sven, Blome Mark, Jayanti Sriharsha V., Norris David J. (2015), Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection, in Advanced Materials, 27(40), 6244-6250.
Complex Chiral Colloids and Surfaces via High-Index Off-Cut Silicon
McPeak Kevin M., van Engers Christian D., Blome Mark, Park Jong Hyuk, Burger Sven, Gosálvez Miguel A., Faridi Ava, Ries Yasmina R., Sahu Ayaskanta, Norris David J. (2014), Complex Chiral Colloids and Surfaces via High-Index Off-Cut Silicon, in Nano Letters, 14(5), 2934-2940.

Collaboration

Group / person Country
Types of collaboration
Prof. Christian Hafner, ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Zuse Institute Berlin Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Materials Physics Center, Donostia-San Sebastian Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. Cyriaque Genet France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel

Abstract

This project will fabricate and study inorganic colloidal particles that have a chiral shape. In general, an object is chiral if it cannot be superimposed on its mirror image. Colloids involve micrometer- to nanometer-scale solid particles that are dispersed in a solvent. Despite the importance of colloidal particles in many commercial products, it remains a fundamental challenge to prepare such particles that are chiral in shape. If they were available, they could exhibit many new and interesting chemical, transport, and optical properties. In particular, if made from plasmonic metals such as silver or gold, they should exhibit strong optical phenomena, including large circular dichroism. Consequently, they can have uses in many applications, such as catalysis, optics, sensing, and separations. In this project, a Ph.D. student and a postdoctoral researcher will investigate these materials. To prepare chiral particles, the team will use a completely new strategy that combines patterned silicon wafers with template stripping. Because of its simplicity, this approach should be able to provide chiral particles of many different shapes, sizes, and materials. The project will pursue particles that range in size from ~1 micrometer to ~50 nm. While gold will be the initial target material, many other inorganic solids, including metals, semiconductors, oxides, and their combinations will also be fabricated. Once prepared, the main goal of the research will be to gain fundamental understanding of the particles and their potential applications. This will include investigations of: (i) the optical properties of chiral colloidal dispersions, (ii) the binding of chiral molecules and their effect on optical properties, (iii) the transport of chiral particles or molecules through a channel packed with chiral particles, and (iv) the assembly of chiral particles into crystals or larger structures. For the optical properties, the team will also exploit the ability to perform complex electromagnetic simulations on the supercomputer at ETH Zurich and a collaboration with an analytical theorist who specializes in chiral particles. In addition to the training of a Ph.D student and a postdoctoral researcher, the expected outcome of the project is an understanding of how chiral particles can be prepared, their fundamental physical properties, and their potential applications. Preliminary experiments have already shown that the fabrication strategy should be able to provide many interesting materials.
-