Project

Back to overview

Controlling magnetic anisotropy by interfacial coupling

Applicant Nolting Frithjof
Number 146715
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.01.2014 - 31.12.2017
Approved amount 442'559.00
Show all

Keywords (4)

X-ray absorption spectroscopy; artificial multiferroics; magnetic impurities; magnetism at the nanoscale

Lay Summary (German)

Lead
An der Grenzfläche zwischen zwei Festkörpern können neue Eigenschaften entstehen, die keines der beiden Materialien für sich genommen aufweist. In diesem Projekt untersuchen wir solche neuen Eigenschaften an magnetischen Nanosystemen und zwar an magnetischen Clustern auf Oberflächen und an sogenannten künstlichen Multiferroics. In enger Zusammenarbeit zwischen der EPFL und dem PSI verwenden wir dabei Synchrotronstrahlung und Rastertunnelmikroskopie im Labor.
Lay summary

Inhalt und Ziel des Forschungsprojekts

1) Bei den künstlichen Multiferroics wollen wir die Kopplung an den Grenzflächen optimieren und zu sehr dünnen Schichten und auch lateral kleinen Strukturen gehen.

2) Sehr kleine Cluster, bestehend aus wenigen Atomen, können durch die Kopplung an ein Substrat eine hohe magnetische Anisotropie haben. Durch die Kombination von verschiedenen magnetischen Elementen in den Clustern und Variation der Substrate wollen wir diese optimieren, um möglichst kleine stabile Magnete herzustellen.

 

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Die Manipulation und Kontrolle der Magnetisierung von Nanosystemen durch Grenzflächenkopplung ist ein wichtiges internationales Forschungsgebiet, welches sowohl grundlegende physikalische Fragestellung beantworten als auch neue Wege für die Speicherung und Verarbeitung von Informationen aufzeigen kann.

Direct link to Lay Summary Last update: 05.06.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Study of magneto-electric coupling between ultra-thin Fe films and PMN-PT using Xray magnetic circular dichroism
S.R.V. Avula, J. Heidler, J. Dreiser, J. Vijayakumar, L. Howald, F. Nolting, C. Piamonteze (2018), Study of magneto-electric coupling between ultra-thin Fe films and PMN-PT using Xray magnetic circular dichroism, in Journal of Applied Physics, 123, 064103-1-064103-5.
4 f occupancy and magnetism of rare-earth atoms adsorbed on metal substrates
Singha Aparajita, Baltic Romana, Donati Fabio, Wackerlin Christian, Dreiser Jan, Persichetti Luca, Stepanow Sebastian, Gambardella Pietro, Rusponi Stefano, Brune Harald (2017), 4 f occupancy and magnetism of rare-earth atoms adsorbed on metal substrates, in PHYSICAL REVIEW B, 96(22), 1-13.
Interplay of Fe and Tm moments through the spin-reorientation transition in TmFeO3
Staub U., Rettig L., Bothschafter E. M., Windsor Y. W., Ramakrishnan M., Avula S. R. V., Dreiser J., Piamonteze C., Scagnoli V., Mukherjee S., Niedermayer C., Medarde M., Pomjakushina E. (2017), Interplay of Fe and Tm moments through the spin-reorientation transition in TmFeO3, in PHYSICAL REVIEW B, 96(17), 1-11.
Magnetic properties of strained multiferroic CoCr2O4: A soft x-ray study
Windsor Y. W., Piamonteze C., Ramakrishnan M., Scaramucci A., Rettig L., Huever J. A., Bothschafter E. M., Bingham N. S., Alberca A., Avula S. R. V., Noheda B., Staub U. (2017), Magnetic properties of strained multiferroic CoCr2O4: A soft x-ray study, in PHYSICAL REVIEW B, 95(22), 1-15.
Superlattice of Single Atom Magnets on Graphene
Baltic Romana, Pivetta Marina, Donati Fabio, Wackerlin Christian, Singha Aparajita, Dreiser Jan, Rusponi Stefano, Brune Harald (2016), Superlattice of Single Atom Magnets on Graphene, in NANO LETTERS, 16(12), 7610-7615.
Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator
Wackerlin Christian, Donati Fabio, Singha Aparajita, Baltic Romana, Rusponi Stefano, Diller Katharina, Patthey Francois, Pivetta Marina, Lan Yanhua, Klyatskaya Svetlana, Ruben Mario, Brune Harald, Dreiser Jan (2016), Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator, in ADVANCED MATERIALS, 28(26), 5195-5195.
Magnetic Hysteresis in Er Trimers on Cu(111)
Singha Aparajita, Donati Fabio, Wackerlin Christian, Baltic Romana, Dreiser Jan, Pivetta Marina, Rusponi Stefano, Brune Harald (2016), Magnetic Hysteresis in Er Trimers on Cu(111), in NANO LETTERS, 16(6), 3475-3481.
Magnetic remanence in single atoms
Donati F., Rusponi S., Stepanow S., Waeckerlin C., Singha A., Persichetti L., Baltic R., Diller K., Patthey F., Fernandes E., Dreiser J., Sljivancanin Z., Kummer K., Nistor C., Gambardella P., Brune H. (2016), Magnetic remanence in single atoms, in SCIENCE, 352(6283), 318-321.
Strong antiferromagnetic exchange between manganese phthalocyanine and ferromagnetic europium oxide
Waeckerlin Christian, Donati Fabio, Singha Aparajita, Baltic Romana, Uldry Anne-Christine, Delley Bernard, Rusponi Stefano, Dreiser Jan (2015), Strong antiferromagnetic exchange between manganese phthalocyanine and ferromagnetic europium oxide, in CHEMICAL COMMUNICATIONS, 51(65), 12958-12961.

Collaboration

Group / person Country
Types of collaboration
Dr. L. Heyderman/PSI Switzerland (Europe)
- Research Infrastructure
Prof. P. Gambardella Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Associated projects

Number Title Start Funding scheme
175941 Long spin lifetime in rare-earth-based quantum magnets supported on graphene 01.03.2018 Project funding (Div. I-III)
160186 Manipulating the magnetic properties of individual nanoparticles 01.12.2015 Project funding (Div. I-III)
157081 Quantum Properties of Nanostructures at Surfaces 01.10.2014 Project funding (Div. I-III)
169467 Controlling magnetic anisotropy by interfacial coupling 01.06.2017 Project funding (Div. I-III)
140479 Magnetic, Catalytic and Optical Properties of Nanostructures at Surfaces 01.04.2012 Project funding (Div. I-III)
117410 Proposal for EPFL Endstation at SLS for X-ray Magnetic Dichroism at high Fields and low Temperatures XTreme 01.08.2007 R'EQUIP
142474 Magnetic and Optical Investigations of Surface-Deposited Single-Ion Magnets 01.05.2013 Ambizione

Abstract

Bringing different materials into contact at the nanoscale opens the door to improving or creating new functionalities by tuning the properties of the resulting nanointerfaces. Nanoscale magnetic systems exhibit a variety of unusual phenomena when compared to the bulk materials, in particular when the dimensions involved are comparable to critical length scales such as the domain wall width and the exchange length. Artificial heterostructures consisting of thin films and small clusters down to single atoms, deposited in a controlled way on surfaces or embedded in a substrate are model systems to investigate the origin of the magnetic anisotropy energy (MAE) and magnetic interactions. The magnetic properties of these systems strongly depend on the atomic coordination, on the substrate electronic structure close to the Fermi level, and on the type of the interaction in the heterostructure. To understand the interaction and potential new functionalities of these coupled systems we aim in this proposal at studying the properties of two classes of systems.Project A) Artificial multiferroic systems, in which novel properties emerge from the coupling between a ferroelectric and a ferromagnetic material at the interface, are a possible route to obtain significant room temperature magnetoelectric coupling in nanoscale systems. Here, we want to understand and optimize the magnetic anisotropy of ferromagnetic thin films through the magnetoelectric coupling with a ferroelectric substrate. Further, we want to understand what happens to the coupling if dimensionality is reduced down to ferromagnetic clusters or single atoms of ferromagnetic elements.Project B) Magnetic impurities, in the form of single atoms or small clusters (less than 10 atoms) coupled to a substrate can result in high MAE. Unlike large clusters containing hundreds or more atoms, their interaction with the substrate can be relatively easily modeled. Here, we want to find which combination of magnetic atom and substrate results in the highest MAE. As substrates we will use semiconductors, which are promising due to the band gap between conduction and valence states, and graphene which is promising due its high in-plane electron mobility but mainly free sp3 bonds perpendicular to it.Our experimental approach is a combination of scanning tunneling microscopy (STM) with spatially integrating techniques, such as X-ray absorption spectroscopy (XAS) and X-ray magnetic dichroism (XMD). For this, the groups of Prof. H. Brune (EPFL) and Prof. F. Nolting (PSI) have built the X-Treme beamline at the Swiss Light Source (SLS). This beamline gives the unique opportunity of combining in a single UHV chamber a low temperature (2K) high magnetic field (7T) cryostat for XAS-XMD, a variable temperature STM (scanning tunneling microscope), a MOKE (magneto-optical Kerr effect) for in-situ characterization, and a chamber for sample cleaning and MBE growth with the sample temperature adjustable in the range 30-1600 K.We apply for the funding of two Ph.D. students, one will be located at EPFL and one at PSI, each student will focus on one of the projects but both students will participate in our beam times and therefore closely interact.
-