Back to overview

Development of phase change emulsion systems for thermal energy storage

Applicant Mazzotti Marco
Number 146662
Funding scheme Project funding (Div. I-III)
Research institution Institut für Verfahrenstechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Chemical Engineering
Start/End 01.01.2014 - 30.06.2016
Approved amount 256'141.00
Show all

Keywords (4)

phase change emulsion; crystallization; energy storage; emulsion

Lay Summary (German)

Entwicklung eines Phasenwechselstoffes zur WärmespeicherungErneuerbare Energien, die naturbedingt nicht permanent verfügbar sind, werden zukünftig einen wachsenden Anteil an der Energieversorgung ausmachen. Aus diesem Grund werden Technologien, wie die Speicherung von Energie in Zeiten eines Angebotsüberschusses oder eine Freisetzung bei erhöhter Nachfrage, eine bedeutende unterstützende Rolle spielen.
Lay summary

Dies gilt insbesondere für die Sonnenwärmeenergie, die weit kostengünstiger und effizienter als Strom gespeichert werden kann. Die Speicherung von solarer Wärme kann mit Phasenwechselmaterialien (PCM) erfolgen, die während Phasenübergängen wie z. B. fest-flüssig in der Lage sind, grosse Mengen Wärme bei einer bestimmten Temperatur aufzunehmen oder abzugeben. Die direkte Anwendung solcher PCMs zur Speicherung und zur Übertragung von Wärme ist durch ihre geringe Wärmeleitfähigkeit eingeschränkt. Durch die Verwendung sogenannter PCM-Emulsionen (PCE) oder PCM-Mikrokapseln (PCS), welche das Oberflächen-Volumen-Verhältnisses von PCMs erhöhen, wird die Wärmeübertragung verbessert, wobei die Wärmespeicherungskapazität im Niedertemperaturbereich beibehalten wird.

Inhalt und Ziele des Projektes

Im Mittelpunkt dieses Projektes steht zum einen die Verbesserung des Potenzials der PCE / PCS-Systeme im Niedertemperaturbereich, basierend auf einer nicht-empirischen, soliden wissenschaftlichen Basis. Darüber hinaus soll die Anwendung dieser Systeme im Hochtemperaturbereich, d. h. im Bereich von 150 bis 400 ° C ausgeweitet werden, welches von Interesse für die solarthermische Stromerzeugung ist. 


Direct link to Lay Summary Last update: 12.12.2013

Responsible applicant and co-applicants



Group / person Country
Types of collaboration
LTR / IPE-MAVT / ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
deMello group /ICB-CHAB/ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Biwic 2016 Poster Influence of the droplet volume polydispersity on primary nucleation time probability 06.09.2016 Magdeburg, Germany Dos Santos Elena Cándida; Mazzotti Marco;
Summer School - Crystal Nucleation Fundamentals and Applications Poster Reproducibility assessment of droplet volume distribution in microfluidic devices 20.06.2016 Glasgow, Great Britain and Northern Ireland Dos Santos Elena Cándida; Mazzotti Marco;
Summer School - Crystal Shape Engineering Poster Experimental investigation and modelling of stochastic nucleation of crystals in microfluidic devices 07.07.2015 Zürich, Switzerland Mazzotti Marco; Dos Santos Elena Cándida;
Biwic 2014 Poster Crystallization of Phase Change Emulsions 10.09.2014 Rouen, France Mazzotti Marco; Dos Santos Elena Cándida; Fernández Ronco María Pilar;
SET 2014 Poster Development of Phase Change Emulsions for Thermal Energy Storage 25.08.2014 Gneva, Switzerland Mazzotti Marco; Dos Santos Elena Cándida; Fernández Ronco María Pilar;


Renewable energies, which are of a highly intermittent nature, will in the future be responsible for increasing fractions of the energy mix. Therefore, the technology to store energy during times where it is abundant, and to release it in times of need, will play a crucial enabling role. This applies particularly to solar thermal energy, which can be stored far more cost-effectively and efficiently than electricity. Thermal energy storage can be realized using phase change materials (PCM), which are capable of storing and releasing large amounts of energy by switching between the molten and the solid states at a specific temperature. Micro-droplets of PCM can be suspended in an emulsion, i.e., a phase change emulsion (PCE), which combines a high thermal energy capacity with excellent transport and heat transfer properties. The behavior of a few PCE systems has been explored at low temperature with energy storage in buildings as a target application. However, the potential of this new technology is far from being fully exploited, particularly for large scale high temperature applications in power generation.The proposed project aims on the one hand at enhancing the potential of low temperature PCE systems, basing it on a non-empirical, sound scientific basis. On the other hand, it aims at extending the application of PCE to the high temperatures of interest for solar thermal power generation, i.e., in the range of 150 - 400°C. Therefore the project will be structured in three parts. In Part 1, the behavior of PCE shall be studied in the low temperature range, to characterize theoretically and experimentally all elementary phenomena involved as a prerequisite for a better understanding, description and utilization of the process. In Part 2, PCE systems feasible for high temperature applications will be sought, tested and characterized, for an evaluation of their potential in solar thermal power generation. Finally, Part 3 of the project will address the modeling (using population balance equations), design and optimization of emulsion-based systems for thermal energy storage, and will make a comparative assessment of the merits of the technology as compared to the existing ones. The project builds on a consolidated expertise of the principal investigator's research group in a number of relevant research fields, namely crystallization, emulsion-based processes, and processes in the context of sustainable energy systems.The development of thermal storage devices that are more economical in terms of investment and environmental costs will have a strong impact on the competitiveness of electricity stemming from solar energy. Moreover, the increased availability of such storage devices will allow for a larger percentage of the total electricity demand to be provided by solar thermal power plants in spite of the intermittent availability of solar energy. Research in this area is also valuable from an academic and an educational point of view, and will further strengthen the position of ETH Zurich in the areas of crystallization and of sustainable energy technologies. The project will be carried out at the Separation Processes Laboratory (Institute of Process Engineering, ETH Zurich) headed by Prof. Marco Mazzotti; it will involve one PhD student (3 years, focus on Parts 1 and 3) and one postdoctoral researcher (2 years, focus on Part 2) both with a work load of 100%, and an overall project duration of 3 years is scheduled. The process equipment required to realize this project is available.