Project

Back to overview

Directed self-assembly and mechanics of bioinspired platelet-reinforced composites

Applicant Studart André R.
Number 146509
Funding scheme Project funding (Div. I-III)
Research institution Departement Materialwissenschaft ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Material Sciences
Start/End 01.06.2013 - 31.05.2016
Approved amount 361'100.00
Show all

Keywords (5)

bioinspired materials; microstructure; composites; self-assembly; platelets

Lay Summary (German)

Lead
Biologische Verbundstoffe wie Muschelschalen und Zähne sind ähnlichen mechanischen Belastungen wie ihre synthetischen Gegenstücke ausgesetzt und bergen damit neue Erkenntnisse über die effektive Gestaltung der härteren und haltbareren Verbundwerkstoffe. Ziel dieses Projekts ist es, die Herausforderungen in der Verarbeitung zu bewältigen und unser Verständnis über die Beziehungen zwischen Struktur und Eigenschaften in biologischen und bioinspirierten Verbundwerkstoffen zu vertiefen.
Lay summary

Starke und leichte Verbundwerkstoffe werden im Transportwesen, in biomedizinischen und strukturellen Anwendungen eingesetzt, weisen aber dennoch einige Mängel auf wie tiefe Schlagzähigkeit, geringe Delaminierungsbeständigkeit und erhöhter Verschleiß auf. Interessanterweise sind biologische Verbundstoffe wie Muschelschalen und Zähne ähnlichen mechanischen Belastungen wie ihre synthetischen Gegenstücke ausgesetzt und bergen damit neue Erkenntnisse über die effektive Gestaltung der härteren und haltbareren Verbundwerkstoffe. Nach einem solchen bioinspirierten Ansatz wurden neue Verarbeitungsrouten entwickelt, um in synthetischen Systemen die gesamte Architektur von biologischen Materialien zu imitieren. Die Entwicklung von Selbstassemblierungsmethoden zu bioinspirierten Verbundwerkstoffen mit einem hohen Volumenanteil von Verstärkungsteilchen bleibt dennoch sehr herausfordernd. Darüber hinaus ist der Einsatz von heterogenen, bioinspirierten Architekturen als Modellsysteme, um die mechanischen Design-Prinzipien von biologischen Materialien zu untersuchen, noch nicht systematisch erforscht worden. Ziel dieses Projekts ist es, die Herausforderungen in der Verarbeitung zu bewältigen und unser Verständnis über die Beziehungen zwischen Struktur und Eigenschaften in biologischen und bioinspirierten Verbundwerkstoffen zu vertiefen. Im ersten Teil möchten wir die gezielte Selbstorganisation von magnetisierten Plättchen unter mechanischen und magnetischen Stimuli untersuchen, um hochverstärkte Verbundwerkstoffe zu produzieren. Der zweite Teil beinhaltet die systematische Studie der Mechaniken synthetischer Modellverbunde, welche den heterogenen Architekturen von Muschelschalen und Zähnen nachempfunden sind. Dies wird Aufschluss über die Design-Prinzipien dieser einzigartigen, biologischen Verbundwerkstoffe geben.


Direct link to Lay Summary Last update: 27.06.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Geologically-inspired strong bulk ceramics made with water at room temperature
Bouville Florian, Studart André R. (2017), Geologically-inspired strong bulk ceramics made with water at room temperature, in Nature Communications, 8, 14655-14655.
Magnetic assembly of transparent and conducting graphene-based functional composites
Le Ferrand H., Bolisetty S., Demirors A.F., Libanori R., Studart A.R., Mezzenga R., Magnetic assembly of transparent and conducting graphene-based functional composites, in Nature Communications, 7, 12078.
Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries
Billaud Juliette, Bouville Florian, Magrini Tommaso, Villevieille Claire, Studart André R., Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries, in Nature Energy, 1, 16097.
Magnetically assisted slip casting of bioinspired heterogeneous composites
Le Ferrand Hortense, Bouville Florian, Niebel Tobias P., Studart Andre R., Magnetically assisted slip casting of bioinspired heterogeneous composites, in Nature Materials, 14(11), 1172.
Role of the polymer phase in the mechanics of nacre-like composites
Niebel Tobias P., Bouville Florian, Kokkinis Dimitri, Studart André R., Role of the polymer phase in the mechanics of nacre-like composites, in Journal of the Mechanics and Physics of Solids, (Available ), online.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
MRS Fall meeting 2015 Individual talk Controlled Assembly of Heterogeneous Bioinspired Composites 29.11.2015 Boston, United States of America Le Ferrand Hortense;
Biobone symposium Individual talk Magentically-assisted slip casting of bioinspired heterogeneous composites 13.10.2015 Santiago di compostella, Spain Le Ferrand Hortense; Bouville Florian;


Communication with the public

Communication Title Media Place Year
Media relations: print media, online media ETH-Forscher stellen künstlichen Zahn her NZZ German-speaking Switzerland 2015

Awards

Title Year
ETH Medal 2016

Associated projects

Number Title Start Funding scheme
135306 Bioinspired 3-D reinforced composites 01.04.2011 Project funding (Div. I-III)
126646 Assembly of Colloidal Particles under External Chemical Stimuli 01.10.2009 Project funding (Div. I-III)
157696 3D Printing of Heterogeneous Bioinspired Composites 01.02.2016 Temporary Backup Schemes
156011 Hierarchical carbon-fiber composites with tailored interphase obtained via electrophoretic deposition of magnetized and functionalized carbon nanotubes 01.06.2015 Project funding (Div. I-III)

Abstract

Strong and light-weight composite materials are increasingly used in transportation, biomedical and structural applications, but still exhibit several shortcomings such as low impact resistance, low delamination resistance and increased wear. Interestingly, biological composites like mollusk shells and the tooth have been exposed to similar mechanical loading conditions as their synthetic counterparts and thus might provide new insights into the effective design of tougher and more durable artificial composites. Following such bioinspired approach, new processing routes have been developed to mimic in synthetic systems the overall architecture of biological materials. Despite the promising results achieved so far, the development of self-assembly pathways to create bioinspired composites with volume fraction of reinforcement as high as that of natural systems remains very challenging. Moreover, the use of heterogeneous bioinspired architectures as model systems to investigate the mechanical design principles of biological materials has yet to be systematically explored. This project aims at addressing this major processing challenge and deepening our understanding of structure-property relations in biological and bioinspired composites. In the first part of the project, we propose to investigate the directed self-assembly of magnetically-responsive platelets under mechanical and magnetic stimuli as a means to create highly reinforced composites (Part I). In the second part, we propose to systematically study the mechanics of model synthetic composites that mimic the heterogeneous architectures of teeth and mollusk shells in order to shed light into the design principles of such unique biological composites (Part II). In Part I, mechanical stimulus will be used to provide alumina microplatelets with enough kinetic energy to spontaneously self-assemble into a thermodynamically stable nematic phase. This will be combined with the application of a rotating external magnetic field to align the nematic domains into one specific orientation at high platelet volume fractions. In Part II, the hardness, wear resistance and crack growth resistance of model bilayer architectures that resemble the structure of teeth and mollusk shells will be evaluated. The effect of the relative thickness between layers with different platelet orientations and the presence of mixed platelet orientations at the interface of the bilayer composites will be systematically investigated. On the basis of this research, we expect to identify new routes for the cost-effective and scalable fabrication of highly-reinforced bioinspired composites and to provide new insights into the mechanical design principles underlying the structure of selected biological materials.
-