Projekt

Zurück zur Übersicht

New Oxyphosphates as High Specific Charge Electrode Materials for Lithium-Ion Batteries

Gesuchsteller/in Novák Petr
Nummer 146383
Förderungsinstrument Projektförderung (Abt. I-III)
Forschungseinrichtung Labor für Elektrochemie Paul Scherrer Institut
Hochschule Paul Scherrer Institut - PSI
Hauptdisziplin Anorganische Chemie
Beginn/Ende 01.04.2013 - 31.12.2016
Bewilligter Betrag 227'953.00
Alle Daten anzeigen

Alle Disziplinen (3)

Disziplin
Anorganische Chemie
Materialwissenschaften
Physikalische Chemie

Keywords (4)

In situ methods; Synthesis; Lithium-ion batteries; Oxyphosphates

Lay Summary (Französisch)

Lead
Depuis la première commercialisation des batteries lithium ion par Sony au début des années 90, les recherches se sont focalisées sur le développement de nouveaux matériaux capable de délivrer une plus grande capacité spécifique. Le but principal de ce projet est de développer une méthode permettant de relier les données électrochimiques avec les propriétés structurales et d’utiliser les oxyphosphates comme matériau modèle.
Lay summary

Depuis la première commercialisation des batteries lithium ion par Sony au début des années 90, les recherches se sont focalisées sur le développement de nouveaux matériaux capable de délivrer une plus grande capacité spécifique. Les recherches ont permis d’améliorer et d’augmenter la capacité spécifique des électrodes de batteries telles que le graphite (anode) et les matériaux d’oxydes (cathode), leur limite est proche d’être atteinte à l’heure actuelle. Le nouveau marché du véhicule électrique requiert des matériaux d’électrodes avec une grande capacité spécifique, et pour se faire de nouvelles approches doivent être envisagées. L’étude de nouvelles familles de matériaux telles que les oxyphosphates de métaux de transition est très prometteuse avec une capacité supérieure à 450Ah/kg (370Ah/kg pour le graphite).

Le but principal de ce projet est de développer une méthode permettant de relier les données électrochimiques avec les propriétés structurales et d’utiliser les oxyphosphates comme matériau modèle. Grace à l’établissement de la relation structure/propriétés électrochimiques, nous serons capables de comprendre et de déterminer le mécanisme réactionnel des oxyphosphates tels que M0.5TiOPO4 (M= Co, Ni, Cu, Fe ou Mn). Nous adapterons alors ces résultats à une toute nouvelle famille d’oxyphosphates de type vanadate M0.5VOPO4. Le principal intérêt de remplacer le titane par le vanadium est d’abaisser le potentiel en cyclage et donc de gagner en énergie spécifique. Comprendre le mécanisme de ces deux familles d’oxyphosphates aidera la communauté scientifique à comprendre la relation entre le nombre d’électrons provenant du métal de transition et le mécanisme électrochimique, approche non connue de la communauté scientifique actuellement pour ces familles de matériaux.

Direktlink auf Lay Summary Letzte Aktualisierung: 27.03.2013

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries
(2015), In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries, in Electrochimica Acta, 176, 18-21.
Lithium chromium pyrophosphate as an insertion material for Li-ion batteries
(2015), Lithium chromium pyrophosphate as an insertion material for Li-ion batteries, in Acta crystallographica Section B, Structural science, crystal engineering and materials, 71(Pt 6), 661-7.
Simultaneous in Situ X-ray Absorption Spectroscopy and X-ray Diffraction Studies on Battery Materials: The Case of Fe0.5TiOPO4
(2015), Simultaneous in Situ X-ray Absorption Spectroscopy and X-ray Diffraction Studies on Battery Materials: The Case of Fe0.5TiOPO4, in Journal of Physical Chemistry C, 119(7), 3466-3471.
Elucidation of the reaction mechanism upon lithiation and delithiation of Cu0.5TiOPO4
(2014), Elucidation of the reaction mechanism upon lithiation and delithiation of Cu0.5TiOPO4, in Journal of Materials Chemistry A, 2(31), 12513-12518.
Influence of cut-off potential on the electrochemistry of M0.5TiOPO4 (M = Fe, Cu) synthesized by a new route
(2013), Influence of cut-off potential on the electrochemistry of M0.5TiOPO4 (M = Fe, Cu) synthesized by a new route, in Journal of The Electrochemical Society , 160(9), A1534-A1538.

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
ETHZ, Laboratory of Inorganic Chemistry (Profs. Nesper, Kovalenko, Coperet) Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
Prof. Dr. R. Nesper, ETHZ, Laboratory for Inorganic Chemistry Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Forschungsinfrastrukturen

Wissenschaftliche Veranstaltungen

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
229th ECS Meeting Vortrag im Rahmen einer Tagung Li3Cr2(PO4)3 As Cathode Material for Li-Ion Batteries 29.05.2016 San Diego, Vereinigte Staaten von Amerika Novák Petr; Villevieille Claire; Reichardt Martin Christoph;
LiBD 7 – 7th Lithium Battery Discussion – Electrode Materials Poster Lithium chromium phosphate Li3Cr2(PO4)3 as cathode material for Li-ion batteries 22.06.2015 Arcachon, Frankreich Novák Petr; Reichardt Martin Christoph; Villevieille Claire;
65th Annual Meeting of the International Society of Electrochemistry Poster Combined in situ XRD and XAS studies on materials for Li-ion batteries 31.08.2014 Lausanne, Schweiz Novák Petr; Bleith Peter; Villevieille Claire;
65th Annual Meeting of the International Society of Electrochemistry Poster Lithium chromium pyrophosphate as new insertion material for Li-ion batteries 31.08.2014 Lausanne, Schweiz Villevieille Claire; Novák Petr; Reichardt Martin Christoph;
Conference Power our Future 2014 – The 2nd International Forum on Progress and Vortrag im Rahmen einer Tagung Combined in situ XRD and XAS studies on materials for Li-ion batteries 02.04.2014 Vitoria, Spanien Bleith Peter; Novák Petr; Villevieille Claire;
224th ECS Meeting Vortrag im Rahmen einer Tagung Dual reaction mechanism - combining insertion and conversion 28.10.2013 San Francisco, Vereinigte Staaten von Amerika Bleith Peter; Novák Petr; Villevieille Claire;
International Conference “Next Generation Batteries - Materials, ..." Vortrag im Rahmen einer Tagung Reaction mechanism of M0.5TiOPO4 upon lithiation and delithiation 15.06.2013 Delmenhorst, Deutschland Bleith Peter; Novák Petr; Villevieille Claire;


Auszeichnungen

Titel Jahr
Fellow of the International Society of Electrochemistry 2016
Best Poster Prize Winner from the 65th Annual Meeting of the International Society of Electrochemistry, Lausanne, August 31–September 5, 2014. 2014

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
129508 New Oxyphosphates as High Specific Charge Electrode Materials for Lithium-Ion Batteries 01.04.2010 Projektförderung (Abt. I-III)
156597 Surface and interface investigations of high density energy electrodes for sodium-ion batteries 01.10.2014 Projektförderung (Abt. I-III)
129508 New Oxyphosphates as High Specific Charge Electrode Materials for Lithium-Ion Batteries 01.04.2010 Projektförderung (Abt. I-III)

Abstract

Based on the very encouraging results of the previous project period, the main goal of this extension project is the design, synthesis, and characterization of a new family of oxyphosphates candidate materials for the next generation of high specific charge electrode materials for Li-ion batteries.Since the commercialization of the first Li-ion battery by Sony in the early 90’s, researchers are still looking for new materials able to offer higher density energy. Even if great improvements have been achieved in the practical specific charge of oxides and graphite, their limits are likely to be reached soon. As the need for much higher specific charge is a major challenge on the way towards electrical vehicles based on Li-ion technology, new classes of materials have to be studied. The studies carried on oxyphosphate materials have shown they were promising electrode materials with a first charge capacity higher than 450 Ah/kg.The first goal of this project is to develop a powerful tool able to combine the structure/properties data to use it as a model for the oxyphosphates family. This tool will be developed by the cross linking of different disciplines such as high quality crystallography for the structural part and the electrochemistry knowledge we already acquired on this kind of materials family. Thanks to the results obtained with the help of the structure/properties tool we will be able to understand the full reaction mechanism of different oxyphosphates (this task was already completed for the Ni0.5TiOPO4 in the previous project). We will then adapt it to a new brand of materials not yet explored electrochemically such as M0.5VOPO4 (M= Co, Ni, Cu, Fe or Mn). The main interest of replacing Ti by V is to decrease the potential window during cycling, to gain in energy density. Having at the same time the results for oxyphosphates and oxyvanadates materials will help the scientific community to understand the link between the number of electrons of the transition metal and the reaction mechanism; as such compounds have never been reported. This project should open new perspectives in the search for high specific charge electrode materials. Finally the results of the two previous tasks will allow us to design a brand new high specific charge electrode material. This “ideal” oxyphosphate will then be synthesized through a method derived from the ones used for the known compounds (solid state or soft chemistry) and depending on the nature of the elements.In short, the fact that we cannot explain the link between the entire charge capacity and the role of the transition metal for the oxyphosphate class of materials indicates that new mechanism of intercalation and/or conversion is certainly underlying it. Getting comprehension on this new mechanism will help taking the step further towards the design of better battery materials.
-